
Proceedings of the 8th International Conference on Applied Informatics
Eger, Hungary, January 27–30, 2010. Vol. 2. pp. 429–436.

Measuring Software Complexity by Types*

Gábor Pália, Tamás Kozsikb

Department of Programming Languages and Compilers,
Eötvös Loránd University

a pgj@elte.hu b kto@elte.hu

Abstract

In typed programming languages, types play an important role in many
aspects of a program. This paper discusses a potential approach to software
measurement techniques for software written in strongly typed, especially
functional programming languages. As number and size of software systems
implemented in such languages are continuously growing nowadays, existence
of valuable software metrics is getting important. We are confident that it is
worth focusing on types themselves when trying to say something about the
quality of a software product. We examine the possibilities of describing pro-
gram quality and complexity through a static analysis of types and deriving
metrics from them.

Keywords: Functional Programming, Software Measurement, Software Qual-
ity, Metrics, Programming with Types, Haskell

MSC: 68N30 (Mathematical aspects of software engineering)

1. Introduction

With the rise of strongly typed programming languages, types are present in most
programming languages and they are already exploited in many ways by the re-
cent compiler systems. There are many active research projects in the field, and
the most sophisticated languages tend to be based on exhaustive type theoretical
work. Typing, and programming with types are virtually present from the birth
of computer science, and they have proven to be a useful tool both in formulating
and verifying programs for correctness.

In this paper we present a theoretical basis on how to measure software com-
plexity by types, and define some simpler metrics based on it for demonstration.
Main contributions of our work can be highlighted as follows.

*Supported by POSDRU/6/1.5/S/2008, TÉT AT-10/2008

429

430 G. Páli, T. Kozsik

– By skimming through the ways as types are already used (abstraction, safety,
optimization, documentation), one might have the intuition that they are able
to capture the intentions behind a program, therefore we can be describe how
it was constructed. We convert this intuition into concrete mathematical
concepts (Section 2.1).

– When analyzing the different relations between the employed types, we can
draw several conclusions on the expected quality of the software. This helps
us to determine whether the given software was developed by the right prin-
ciples and to spot potential problems with the implementation, or even to
discover further opportunities for improving the continuity of abstraction in
the employed software architecture. We define some of the possible type-
based measurement methods and explain their usage through an example
(Section 2.2, Section 3).

– We add some notes on how to implement these methods and how the concepts
should be represented in the real world. Although here we primarily focused
on functional programming languages, we believe that it can be adapted to
other programming languages or paradigms as well with a few modifications
(Section 2.3).

2. Types as Measures of Complexity

Different kinds of software metrics on types can be defined to describe complexity
of software products. Although only simple programs are discussed in the paper,
we belive that the proposed solutions can be extended to programs incorporating
several modules and software projects built upon them with a minimal effort. The
main idea behind this approach is based on a claim for measuring, or at least giving
an estimate on, the usage of an important abstraction, the concept of types.

Because metrics should be easy to compute yet exhaustive enough to provide
quick and useful feedback for the programmer on her work, technically we describe
statistical heuristics on types appearing in programs, and a method on how to turn
type information into numbers. Metrics values are computed statically, purely
based on the source code not on run-time profiling. It is based on the assumption
that developers need to maintain all the source code, which costs money, and an
important goal of using metrics is to estimate cost of the software development
process from the beginning. Testing usually takes more time and covers only a
part of all possible uses.

2.1. Basic Concepts

To explain the computations required for determining the value of the metrics, it
is assumed that the analysis is run on a program P . During the analysis, we will
need the set of types of P as

Measuring Software Complexity by Types 431

τP = τ0 ∪ τ1 ∪
(

n⋃

i=1

τMi

)
(2.1)

where τ0 refers to base types offered by the given language implementation, which
are taken already available. Note that elements of τ0 might not appear in P ex-
plicitly while they can be applied there. Types imported from a module Mi in P
are referred as τMi . Finally, τ1 consists of types defined in P itself.

Similarly to the set of types, names in P can be also given by the same scheme:

νP = ν0 ∪ ν1 ∪
(

n⋃

i=1

νMi

)
(2.2)

where all components are declared in the same way as in Eq. 2.1. The only difference
that all the names must be fully-qualified in order to be unique.

Via τP and νP , a set of identifiers with their assigned types can be constructed
for program P , called ιP :

ιP : P(νP × τP) (2.3)

Supported by the definitions introduced here, we can specify a function o
(Eq. 2.4) which assigns a value to a name-type pair by counting the repetitions
of a name with a given type. This function determines the occurrences of a name
in a program P , i.e. the number of its references.

o : Prg × Id→ N (2.4)

wherePrg is the set of all well-formed programs, and Id is the set of all well-formed,
fully-qualified identifiers according to the grammar of the language.

Another relevant operation is classification of elements of set ιP by their types:
Names with the same type are put in the same class as

[a]P = { i ∈ ιP | i ∼ a } (2.5)

where ∼ is a binary equivalence relation over ιP :

∼ : ιP × ιP → { 0, 1 } (2.6)

Assuming that definition of ∼ is given, ιP can be partitioned into finite number
of disjoint subsets by types, where κP σ is the set of identifiers in program P with
type σ, and n is the number of distinct types (Eq. 2.7), i.e. the number of equiv-
alence classes over ιP by ∼. This corresponds to the number of types assigned to
names in P .

ιP =
n⋃

i=1

κP σi
(2.7)

432 G. Páli, T. Kozsik

By summing all the occurrences of each identifier with the same σ type, an
accumulated value of OP σ can be given which tells how many times each type is
referenced in the program P . This can be interpreted as a weight for σ:

OP σi
=

∑

(ν,σ)∈κP σi

o(ν) (2.8)

2.2. Type-Based Metrics

Different measurements can be formulated based on definitions of the o function
(Eq. 2.4) and the derived OP σi

values (Eq. 2.8). Among other things, the extracted
statistical information would be suitable for describing the following.

• Complexity. The number of types and type schemes used in P , see Eq. 2.5.

It helps to judge whether the program is needed to be split into smaller
sections. A program with too many types might be “over-abstracted” in
some sense.

• Distribution of Types. Set of normalized OP σi
values together with their σi

types which could be given as (for 1, . . . , n)

Dσi =
OP σi∑n

j=1 OP σj

(2.9)

where

n∑

i=1

Dσi = 1 (2.10)

implicitly holds. Then D can be constructed from them as

D = { (σi, Dσi) | i ∈ [1..n] } (2.11)

The resulting D set consists of type-distribution pairs, where each type is
associated with its probability. These pairs tell us which types would be
considered the “backbone” for the implementation. This might help program
architects to identify and collect commonly used programmer-defined types
and design a program component based on them.

• Important Types. Distribution of types in program P , sorted by their κP σ

values in descending order (Eq. 2.12). Therefore the most used types will
appear in the beginning of the enumeration.

(σi, x) ≤ (σj , y) ≡ x ≤ y (2.12)

Measuring Software Complexity by Types 433

where (σi, x), (σj , y) ∈ D, x, y ∈ R, σi, σj ∈ τP , and i 6= j.

This presents us the correct usage of the types offered by the language,
whether there are user-defined types used. After fixing the problems arisen
from a poor strategy of working with abstractions, it can be also verified
whether the rewritten version is a right step towards a better design.

2.3. Notes on Implementation

Now we are sketching simple algorithms on how to implement the sets and functions
defined previously. First, consider the generation of names of P : Read and parse
the given P , while collecting all the identifiers in a list. Construction of the set of
types (Eq. 2.1) is performed by the collection of names: For each name in the finite
set of names (Eq. 2.2), look up or infer the type of the given name, and construct
a set of ordered name-type pairs (Eq. 2.3).

The implementation of the ∼ function (Eq. 2.6) is not straightforward and it
may have several effects on the results. Checking equivalence of elements in ιP
is based on their type component. Therefore computing the result of ∼ is merely
about deciding whether the given types can be considered the same. As a trivial
approach, every type with a different name could be treated as an independent
entity. But we think this might lead to very biased results, because there might
be type synonyms defined in the program to help the reader which should not be
considered a mistake at all, thus they should not be distinguished. For Hindley-
Milner type systems where existence of principal types is unique, it could be a good
compromise to say that two types are considered equal if their most general type
or principal type is the same. Using this principle, we could say that σa ∼ σb holds
if there exists a common general type. However, in other type systems one might
need to use different methods, e.g. in structural type systems, type equivalence
should be determined by a structural comparison.

Note that since all the identifiers found in program P are collected, it must
contain names of functions (or subroutines) as well which types are more complex
to handle. A possible way to work with types of functions is to consider only the
value of what they return. This recommendation is based on the intuition that
functions have arbitrary combination and number of parameters which would also
result in unnecessarily fragmented statistics. According to these observations, we
can say that type of a function should be always split into components. Here we
represent functions as they appear in their curried form in λ-calculus:

f :: σf0 → . . . → σfn → σf (2.13)

where σf corresponds to the type of the value returned by f , f0, . . . , fn are the
arguments of f , and σf0 , . . . , σfn are the types of arguments.

In this way f in ι can be resolved into a set (Eq. 2.14) which can be added to
ιP .

{ (f, σf), (νf0 , σf0), . . . , (νfn , σfn) } (2.14)

434 G. Páli, T. Kozsik

where νfi ∈ Id, σfi ∈ τP .

3. An Example

To demonstrate how metrics could be calculated by following the formulas and
suggestions we proposed above, let us take a real-life example (see Figure 1). The
sample program solves the problem of A* path finding for an ASCII map and
it is implemented in Haskell in 71 lines of code (ELOC1: 64). It uses a custom
implementation for priority queues but we omitted it and its source code from the
measurement because of space constraints. 2

import Control.Monad (guard, liftM2)
import Data.List (elemIndex)
import qualified Data.Set as S
import qualified Data.Map as M
import qualified PriorityQueue as Q

type Point = (Int, Int)
type Map = [[Char]]

main :: IO ()
main = interact doit

heuristic :: Point -> Point -> Int
heuristic (x, y) (u, v) = abs (x - u) ‘max‘ abs (y - v)

astar :: (Ord a, Ord b, Num b) =>
a -> (a -> [a]) -> (a -> Bool)

-> (a -> b) -> (a -> b) -> [a]
astar s succ end cost heur
= astar’ (S.singleton s) (Q.singleton (heur s) [s])
where

astar’ seen q
| Q.null q = error "No Solution."
| end n = next
| otherwise = astar’ seen’ q’
where
((c,next), dq) = Q.deleteFindMin q
n = head next
succs = filter (‘S.notMember‘ seen) $ succ n
calc = (+ c) . (subtract $ heur n) .

liftM2 (+) cost heur
costs = map calc succs
nexts = map (: next) succs
czs = Q.fromList (zip costs nexts)
q’ = dq ‘Q.union‘ czs
seen’ = seen ‘S.union‘ S.fromList succs

find :: Char -> Map -> Point
find c m = find’ 0 m
where find’ _ [] = error "Cannot find tile."

find’ y (h:t)
| Just x <- elemIndex c h = (y, x)
| otherwise = find’ (y + 1) t

successor :: Map -> Point -> [Point]
successor m (x,y)
= do u <- [x + 1, x, x - 1]

v <- [y + 1, y, y - 1]
guard (0 <= u && u < length m)
guard (0 <= v && v < length (head m))
guard (u /= x || y /= v)
guard (m !! u !! v /= ’~’)
return (u, v)

path :: Map -> [Point] -> Map
path m l = iterY m l 0
where
iterY [] _ _ = []
iterY (h:t) l n = iterX h l n 0 : iterY t l (n + 1)
iterX [] _ _ _ = []
iterX (h:t) l n m = pick : iterX t l n (m + 1)

where pick = if (n,m) ‘elem‘ l then ’#’ else h)

doit :: String -> String
doit s = unlines . path m $ astar start succ (== end) cost h
where
m = lines s
start = find ’@’ m
end = find ’X’ m
succ = successor m
h = heuristic end
cost (x, y) = costsM M.! (m !! x !! y)
costsM = M.fromList [(’@’,1),(’x’,1),(’X’,1)

,(’.’,1),(’*’,2),(’^’,3)]

Figure 1: A* path finding for an ASCII map written in Haskell

During the analysis of the sources, an additional refinement was made in the
calculation. Haskell programs may contain patterns to match against for splitting
the expressions. We did not follow these matches and count references only for the
original terms, not for their subexpressions. We identified 25 different types and
type schemes which implies that the complexity of this program is 25. Compared
to the normalized lines of code (64), their ratio is ab. 0.39 types introduced per
line, which is reasonable since Haskell programs are rather compact.

1Effective Lines of Code.
2For the complete sources see http://www.haskell.org/haskellwiki/Haskell_Quiz/Astar.

Measuring Software Complexity by Types 435

The distribution (Eq. 2.11) of the types is shown in Figure 2. It also shows
that the important types are Point, Map, Bool, and α with different constraints.
Polymorphic types like α refer to the number of names with generic type em-
ployed in the program, their values might be considered uncertainty in the mea-
surement. However, it is enough to determine how the different polymorphic data
types (Data.Map.Map, Data.Set.Set, lists, and monads) are used. High proba-
bility values for Point and Map clearly support their existence. Type Bool is also
important because of the frequent use of Boolean conditions. In summary, we can
say that the program contains generic components (the astar function) which can
be used in other similar programs, while it uses lists with many types, Maps, Sets,
and its own PriorityQueue.

σ Oσ Dσ

α 17 0.104
Point⋆ 16 0.098
Map⋆ 15 0.092
αNum,Eq,Show 13 0.079
Bool 11 0.067
[α] 11 0.067
[Int] 10 0.061
αNum 10 0.061
[Point⋆] 7 0.043
Set α 6 0.037
PriorityQueue⋆ αOrd β 6 0.037
[String] 5 0.030
Int 5 0.030

σ Oσ Dσ

αMonadPlus 4 0.026
αOrd 4 0.026
αOrd,Num 4 0.026
((αOrd ,[β]),PriorityQueue⋆ αOrd [β]) 4 0.026
String 3 0.018
Maybe α 2 0.012
[αOrd] 2 0.012
Map α 2 0.012
αMonad 2 0.012
αEq,Ord 1 0.006
Char 1 0.006
[(α,β)] 1 0.006
IO α 1 0.006

Figure 2: Detailed type statistics for the sample program. Names
defined in the program are superscripted by stars, all the others are
pre-defined. Constraints (type classes) also appear as superscripts.

4. Related Work

To our knowledge, there has been only a few researches on the subject of measuring
complexity of programs written in a functional programming language. In general,
we believe there is no other known software measurement method based on types,
which implies we might have managed to add a new factor for evaluating software
quality.

Thesis of Klaas van de Berg [1] can be considered the first publication which
takes functional programming languages into account in software metrication, us-
ing Miranda3 which is similar to today’s popular language in the area, Haskell.
Research of Chris Ryder on software measurement for functional programming [2]
[3] aims to define metrics for software engineering purposes to support refactoring
together with visualization techniques to explore further relationships between the
metric values and source code. His work is an extensive study on evaluation and
validation of many possible ways for metrics on functional, especially Haskell pro-
grams. Király and Kitlei have a recent proposal [4] for Erlang on how to measure

3Miranda is trademark of Software Research, Ltd.

436 G. Páli, T. Kozsik

structural complexity of functional programs. Compared to their approach, we ig-
nore details regarding style and size of the syntax, since we believe that types can
describe these factors. Erlang uses dynamic typing which would make hard for us
to adapt our approach, dependability on static type information is a limitation of
our current model.

5. Conclusions

In contrast to the common interests and techniques, importing concepts from statis-
tics in the definition of metrics helps to abstract away from the pure syntactical
details. It can give us a deeper insight on how a program is constructed rather than
spotting out the typical programming mistakes, like using too many parameters for
functions. Chasing the flow of types via generating distributions can quickly and
easily present a potential evaluation of programs on a higher level. This paper is
only an initial discussion of this presumably novel approach, and many details are
still left for future work: Implement the described measurement methods, fine-tune
the implementation details and evaluate the results to fit well with intuitions of
experienced programmers. It should be also investigated how it can be used in
conjunction with refactoring.

Finally we would like to thank Emil Axelsson and Josef Svenningsson from
Chalmers University of Technology, and Mátyás Barczy from University of De-
brecen who contributed to the development of this paper a lot with their invalu-
able comments, and Dan Doel for his nice Haskell example. We would like to
acknowledge the financial support of Programul Operaţional Sectorial Dezvoltarea
Resurselor Umane 2007-2013 (POSDRU/6/1.5/S/3/2008, Romania) and TÉT AT-
10/2008: Verified and Certified Software Components (Hungarian-Austrian Bilat-
eral Scientific and Technological Cooperation).

References

[1] Van Den Berg, K. Software Measurement and Functional Programming, PhD thesis,
Cip-data Koninklijke Bibliotheek, University of Twente, Enschede (June 1995)

[2] Ryder, C. Software Measurement for Functional Programming, PhD thesis, Comput-
ing Lab, University of Kent, Canterbury, UK (August 2004)

[3] Ryder, C., Thompson, S. Software Metrics: Measuring Haskell, In Marko van
Eekelen and Kevin Hammond (eds.), Trends in Functional Programming, pp. 31–46
(September 2005)

[4] Király, R., Kitlei, R., Horváth, Z. Structural Complexity Metrics for Functional
Programming Code, 8th International Conference on Applied Informatics (January
2010)

