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Abstract

This paper presents our experience on tooling and on processing the ver-
ification tasks, in one part with semi-automated model verifier integrated in
modelling tools, and in another part with individual model checker tools. The
goal of experiment is the method for verification tasks during Model-Driven
Development software processes and to achieve the correct by construction
principle.

The tools used for validation is the Telelogic Tau G2 tools, and for formal
verification and validation is the VERIMAG IFx toolbox associated by the IF
(Interchange Format) specification and description language. The integrated
semi-automated validation tasks in a general-purpose commercial Tau G2
tools has been done by model-based automatic generation of the Model Veri-
fier GUT and model-based semi-automated generating test cases. The formal
verification tasks with VERIMAG IFx toolset it consist of engineering the
verification environment, and processing several type of formal verifications.
The built IF verification environment integrates some specific-purpose tools
for modelling and static analysis, like ArgoUML, VERIMAG IFx toolset, and
for model checking like SPIN and CADP. The main result of our experiment is
the position to set out the method for engineering verification tasks and arte-
facts, and to provide intuitive methods for such a model to be visualised and
possible incorrect behaviors to be earlier detected with state space reduction
and deadlock checking.
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1. Introduction

Nowadays, specification languages have an important role beyond model checking
to perform verification at design time [9]. Validation early in the development cy-
cle can improve the software quality and decrease the software development costs.
The specification-oriented style of formal methods supporting correct by construc-
tion invokes the importance of tools. The question is how can we use specifica-
tion languages and tools to express multiple dimensions of design and to prove
that is correct? Most commercially tools promote productivity improvements by
a process-driven automation with simulation and validation from formal domain
specifications. Another’s take many generalization efforts producing also code from
formal specification.

The paper aims to address a method for verification tasks during model-based
development processes. It presents our experience obtained by engineering for-
mal verification tasks: first in a process with semi-automatic ways integrated in
a general-purpose commercial tool and second in a built verification environment
from individual tools, partly open-source. We present the verification workflow
with these tools and we analyze their reuse and model-transformation capabilities.

The remainder of the paper is organized as follows Section 2 presents the Vend-
ingMachine case study for the model-based semi-automated verification process in-
tegrated in the general-purpose commercial Tau G2 [2]. In Section 3 are presented
the VendingMachine case study in model-based verification tasks with VERIMAG
IFx toolset|7,8] for engineering the verification environment and for processing the
verification by combining tools, like ArgoUMLI3], VERIMAG IF Static Analyser[6],
SPIN[4] and CADP! [5], respectively.

2. Integration of verification within a scenario-based

and state-based modelling process with Telelogic
TAU G2

The Section contains our experience in verification processes obtained in semi-
automated way within the Telelogic Tau G2 general-purpose commercial tools that
it supports model design and verification in one framework. It is used for very
large industrial and scientific purposes. For example in the year 2004 the 44% of
the production of software in the world were made by Telelogic Tau tools. The
specification language of Tau G2 is the UML2.0. It supports Model-Driven Archi-
tecture (MDA) process with model-based testing automated by code generation for
Model Verifier artifacts and test simulations. [2].

The Tau G2 Verificator engine supports a model-based semi-automated veri-
fication process to model the test, create test cases and perform the test. The
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verification engineer has to define the signals and signal parameters (sender, re-
ceiver, channel, value) for test cases generated from the design model.

We present the process of verification integrated in Tau tool [2]. The verification
is supported by the GUI of Telelogic Tau G2. For this we must follow to create a
new project "UML for Model Verification" and to create the domain model based on
the requirements. This forms the Design Model of the system with UML diagrams
in terms of an embedded system like signals, interfaces, and components.

The verification tasks are supported by Model Verifier artifact. For this we have
to build a new artifact that gives a new GUI named Model Verifier, see at Figure
1. The building tasks are for configuring the Model Verifier for some behavioral
model elements and the target elements. The Model Verifier basically works with
state machine and sequence diagrams. Add-in for activity diagram is supported by
Telelogic Tau G2 license supplements. The target elements are the simulation kind
(real time, standard, with environment), the target kind (win32, win32 gcc, Solaris
gee, Linux gee). For this a supported C compiler is necessary (Visual Studio, Gec).

The Model Verifier GUI starts with sequence diagram and the engineer has to
configure the scenario-based verification (see at Figure 1, bottom right). Figure
1 illustrates the image of Model Verifier GUI for the test model and the testing
process based on sequence charts.

On the left of Model Verifier windows the engineer can see the model elements,
which are from the design model. On the right there is the scenario sequence view.
The whole system behavior can be followed on the dynamically built sequence chart
during the test case run. On the bottom there are tree windows for scenario choice,
textual view of trace and signal matrix windows. The Model Verifier supports the
saving of the test case model (test sequence and traces), to replay a scenario later
for some motivations (i.e. to perform after the fault corrections, to reuse in MDA
process).
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Figure 1: The scenario-based verification in the Model Verifier GUI
built in Telelogic Tau G2

If the verification engineer wants to follow, how the system works, it needs to
doing the state-based verification process (see Figure 2). If the verification engineer
wants to follow, how the environment interacts with the system, (ie. how the system
has working based on the user requirements), it needs to do the scenario-based
verification process (see Figure 1).

The testing has been done with the simulations of signals. The verification
engineer is who proceeds to send the signals to the system. The behavior (states,
transitions) can be seen on the trace dynamically (scenario-based or state-based see
in Figure 1 or 2). If a fault occurs, the textual view shows what is the failure (i.e.
No instance scheduled for a transition, Signal caused an immediate null transition).
The textual view (Figure 1, bottom middle) is used to trace the system, the engineer
can see the states, the triggers, the signals, the sender of the signals and what will
be the next state (Figure 2, bottom middle, too).
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Figure 2: The state-based verification in the Model Verifier GUI
built in Telelogic Tau G2

The case study had taken for the well-known vending machine, modeled as
embedded system with controller and hardware part, which gets the signals from
the environment (the machine User). User choice is to purchase a coffee with or
without additives. The machine initially is in Idle state, the user puts coins that
trigger the system’s actions (between environment, controller, and hardware)

Figure 2 illustrates the image of Model Verifier GUI generated from Vending-
Machine model to form the test model and the testing process based on state
machines for the verification of deadlock properties in a state-based verification.
The state-based trace ( see at middle in Figure 2) shows from a system view the
states, signals, variables, conditions and actions of the controller state-machine ver-
ification, animated during the state-based verification process.(see Figure 2). From
the system’s environment (the user) the controller gets a signal when the user puts
a coin, and go to the PaidFive state.

The verification is semi-automated, the verification engineer is who starts the
test cases to do, i.e. have sent to the system another signal (Figure 2 bottom left),
i.e. the customer wants to buy a coffee. The response from the system, (in Figure
2 bottom middle) is that the VendingMachine gives back the money (it sends back
a signal to the environment) because it was not enough.

The whole behavior of VendingMachine behavior can be followed within the
scenario-based validation from the dynamically built sequence chart during the
test case run (see at Figure 1).

The refinement of design model after the verification is processed in design view.
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For example to use more parameters in a signal, like coffee with milk and more
sugar, we have to extend the model in the design view. Its verification do at the
same manner, with building the Model Verifier also the verification by refined steps
it is the iteration of semi-automated test case specification and verification.

The usability of Model Verifier GUI and the tools-based MDA process in Tele-
logic Tau G2 general-purpose commercial tools has very useful for non-experts
and experts too. The verification artefacts are reusable parts of the model-driven
development process handling it within reusable system modules.

3. Verification environments and tasks from integra-

tion of specifically built individual formal verifica-
tion tools from VERIMAG IF (Interchange For-
mat) toolset

In a formal verification with individual tools, the main tasks of a verification en-
gineer are to build the verification environment, to create the specification and
configuration files, and to analyze verification traces [1]. To build thus a verifica-
tion environment it consists of to integrate some individual tools by deploying from
three categories of tools:

1. Front-end tools for model transformation interfaces with higher-level lan-
guages and with other validation tools

2. Static analyser tools for the state space reduction before model checking.

3. Behavioural tools for simulation, verification of properties, automatic test
generation.

Figure 3 shows the architecture of verification environment that we integrate
from tools as Verimag IFx toolbox, SPIN, CADP, GraphViz, ArgoUML. This ar-
chitecture is compiled using Debian Linux and should be easy to port to other
platforms as well.

The VERIMAG IFx (Interchange Format) toolbox is developed at VER-
IMAG for modelling and validating distributed systems [6, 7]. The descriptions in
IF language is used as a format for inter-connecting model-based tools by front-end
tools of IFx toolbox.
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Figure 3: The verification environment built from Verimag IFx,
SPIN, CADP, GraphViz, ArgoUML

CADP (“Construction and Analysis of Distributed Processes”) is a popular
toolbox for the design of communication protocols and distributed systems, con-
tains several model-checkers for various temporal logic and mu-calculus, such as
XTL (eXecutable Temporal Logics). CADP is developed by the VASY team at
INRIA Rhone-Alpes and connected to various complementary tools. CADP is
maintained, regularly improved, and used in many industrial projects [5]. SPIN
is a general tool for automated verifying the correctness of distributed software
models. [4]. Tt was written by Gerard J. Holzmann.

The Graphviz (short for Graph Visualization Software) is a package of open
source tools initiated by AT&T Research Labs for drawing graphs specified in
DOT language scripts. It also provides libraries for software applications to use the
tools. It supports the PostScript (ps) and Portable Network Graphics (png) output
formats. We integrated the Graphviz in IF environment because the Verimag IF
models do not have a graphical representation.

The ArgoUML is an UML modeling tool from Open Source Development
project [3]. It runs on any Java platform and it uses the XMI open file format
(XML Model Interchange format).

3.1. The verification engineering’s tasks phases in the built
IF environment

Modelling phase in this case consist for obtaining the IF (Interchange Format)
model of the system. An IF model defines the structure of a system with a set of
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communicating processes, their behaviour with state machines, and the real time
constraints with clock variables and guard conditions on them.

Standard-based modelling tools have an important role in XMI translation into
IF model. In the case when the used modelling tools cannot support XMI trans-
lation, or the model is not given, the IF model of the system has to be create
manually. For more details on the IF language and its semantics see to [8].

Static analysis and model transformation phase has two act. First act
consist of starting from IF model as input to generate with if2gen the IF Simulator
and to create IF descriptions of the configuration files and to perform static analysis
(reach, live, slice) iterations. Iteration for static analysis has been done in command
mode from IF Static Analyser, there is no GUI In a static analysis action, the tool
drives the back-end IF Simulator, and translates the validation results back to
the level of the original model, refactoring them. Such a model can be visualised
(if21, dot) with GraphViz to observe and understand how the system works. The
simulation means have been walking in the state space, random or interactive,
where the verificator can decide which should be the next state, the actual state
and the variables together their actual values. The possible incorrect behaviors
can be detected with the IF toolset and the refactored model has resulted in some
iterations. The second act of this phase is to translate the refactored model with
Verimag IF toolset translators into input for model checkers individual tool, like
if2pml and if2adb into CADP or SPIN for searching deadlock and livelock.

Model checking phase consist for reporting and checking of the translated
file from static analysis phase. The verification tools operate as a simulator, follow-
ing one possible execution path through the system and presenting the resulting
execution trace to the verificator.

3.2. The VendingMachine case study in IF environment

The Verimag IF environment supports three ways of static analysis, Reach to re-
move all the unreachable states, Slice to remove the dead code sequences, and Live
to remove dead variables and/or reset variables when useless in a control state.
Figure 4 shows the VMController process before (in the right) and after (in the
left) from combined reach, slice and static analysis for the VendingMachine case
study from Section 2 (see Figure 2). The configuration file sets live the input Tea,
resulting from slice the reduction of FillCoffee() and from reach the reduction of
the states PaidTen, MakeCoffee resulting from static analysis the model with a
state space reduction that guard their dependability.
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Figure 5 shows the checking for deadlock and livelock properties for the model
resulted from steps of the static analysis phase.

The Vending Machine riche slice live.aut Aldebaran format file in the CADP
provides information from specification properties after this the search for deadlock
and livelock is reported. After the breadth-first search walk in the IF model state
space had 606727 state and 2332246 transitions. With live and reach, and without
slice static analysis due to CADP to give 204 state and 944 transitions. The reduced
specification with slice and following live and reach static analysis due to CADP
to give 63 states and 117 transitions only. The performance of deadlock search had
increased with processing a successive reach, live and slice analysis, before.

4. Conclusion

We proposed to give experience on tooling and on processing of the verification
tasks from several individual tools integrated process-driven in model-based de-
sign. The model-based verification tasks with VERIMAG IFx toolset it consist on
engineering the verification environment to integrate by IF language some specific-
purpose tools for modelling, analysis, and model checking, like ArgoUML, IF ASP,
IF Static Analyser, SPIN, and CADP. We did an experiment to well-known vending
machine system. We concluded that engineering and performing modular verifi-
cation tasks for processing a model refinement give more coverage for non-expert
verification engineer than the test case based automatic verification. Those can
contribute significantly towards the granularity of design model and the perfor-
mance of modelling with the reuse of test models.

The reason for this is that the built verification environment gives more inter-
action choice to handle variables and their values in refinement steps with slice and
live analysis after the reach static analysis. While the automatic verification of
general-purpose Telelogic Tau G2 Model Verifier hide the unreached states or the
testing simulation cannot explores all of possible behaviours.

In the future works we plan to experiment importing UML models via an XMI
repository for transformations from VERIMAG IFx toolbox, like uml2if and if2pml.
The model transformations gives at each refinement of the design model to check
it automatically and to set out the method for engineering verification tasks and
artefacts for an MDA process at earlier phases of model-building.
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