Proceedings of the 8" International Conference on Applied Informatics
Eger, Hungary, January 27-30, 2010. Vol. 2. pp. 391-399.

On the Verification Problems of the
Component-Based Software Development’

Zsolt Borsi?, Laszl6 Kozma®, Anna Medve®

“Department of Software Technology, E6tvos Lorand University

*Department of Electrical Engineering and Information Systems, University of Pannonia

Abstract

The verification problems of the CBSD are related to the fact that a
component must be correct with respect to its specifications respectively that
the entire system must be correct with respect to its requirements. In this
paper, the relation of testing and model checking methods are discussed. An
example is given to demonstrate that model checkers can be successfully used
for validating usage models and supporting model-based testing activities.

Keywords: component-based software development, model-based testing, mo-
del checking

1. Introduction

This paper focuses on the verification problems of the Component-Based Soft-
ware Development (CBSD) using a CBSD method (e.g. KobrA). CBSD methods
constitute a framework for supporting the entire development process and guid-
ing all the activities from specification to validation by providing methodologies
and tools to the developer making his decision easier when, where and how to do.
The KobrA method permits of decomposing the entire system into finer-grained
parts and mapping them to existing functionality of the system [1]. The method
suggests a development process according to a three-dimensional model (compo-
sition/decomposition, abstraction/concretisation, genericity /specialization) and it
supports to handle verification problems of the CBSD process as well [2]. Model
checking tools enable to design complex systems with considerable assurance re-
garding the correctness properties. The results of model-based testing researches
provide methods for modelling testing structure and test behaviour to obtain cor-
rect and robust development artifacts. In this paper an example is given presenting
that model checking can be used to prove that the usage model of the component is

*This research work was supported by TAMOP-4.2.1/B-09/1/KMR-2010-0003.

391

392 Zs. Borsi, L. Kozma, A. Medve

valid against the user’s requirements. This fact demonstrates that model checking
is a convenient way for extending model based methods during high level abstrac-
tion of modelling.

Section 2 summarizes the basic concepts and properties of components. Section
3 reviews the component-based software development activities which are related
to model-based testing and model checking. The latter are introduced shortly in
Section 4. Section 5 presents a verification example. Section 6 summarizes our
approach and describes plans for future work.

2. Component-Based Software Development (CBSD)

The component-based software development (CBSD) consists of two main activ-
ities: the component engineering and the application engineering. The first one
deals with how individual components need to be built to be reusable and the lat-
ter one addresses the assembly and integration of the building blocks into a new
software system.

The component is a central notion of CBSD. This fundamental building block is
a reusable unit for composition. According to many definitions it becomes obvious
that components are basically built on the same fundamental principles as object
technology [1, 2, 3] since an object can be viewed as a special component.

Partitioning a design into components is a subtle process that has a large impact
on the success of the resulted components. It has two aspects — the requirements
and the catalogue of available components. Szyperski in 3] argued that relevant as-
pects governing granularity demand fine coarse-grained partitioning among services
of the system.

All components have two interfaces: the provided and the required interface.
Interfaces are the only means for accessing the services of a component compris-
ing operations provided or expected in terms of services. The operations are the
access points between components and their functionalities depending on pre- and
postconditions that constraint invocation and termination validity for the given
operation. A state is a distinct combination of a component’s internal attribute
values that are constantly changed through the operations and that govern the pos-
sibility for an operation to be invoked under the conditions of a certain state. The
implementation of a component realizes the private design of the component. It is
hidden inside the encapsulating shell of the component and is arbitrarily exchange-
able through any other implementation that realizes the same external features.

The UML can be used at a higher level of abstraction to model and specify sys-
tem artifacts including architecture, functionality of components and collaboration
between entities of a system.

On the Verification Problems of the Component-Based Software Development 393

3. Verification Problems on the Component-Based
Software Development

The verification problems have shown up on two levels of the CBSD: on the level
of component and on the level of entire system. Verifying that a component is
correct with respect to its specifications and verifying that the entire system is
correct with respect to its requirements, is a task of CBSD. Verification methods
are: correctness proofs, synthesis, testing, model checking.

Software testing is a widely used and accepted approach for verification and
validation of a software system. In general, testing involves three main tasks: test
suite definition, test execution and test analysis. The main limitation of testing is
that it can only be performed within or after the implementation activity. As a
consequence, modular checking is the way for the analysis of component properties
based only on the component and its interfaces.

The combination of modelling and testing can be represented by two orthogonal
dimensions namely model-based testing and test modelling. Model-based testing is
the development of testing artifacts on the basis of UML models. The testing and
model checking complement each other in practical use and contribute to improve
test modelling. Test modelling concentrates on how to model testing structure and
test behaviour with the UML.

KobrA supports to solve verification problems of the CBSD process. In [1]
incremental development approaches have been introduced for the KobrA method.
In order to perform test suite generation activity, in KobrA method it is possible to
define test cases during the component specification and realization activities [2].
Testing is applied to generate modes of operation on the final product that show
whether it is conforming to its original requirements specification, and to support
the confidence in its safe and correct operation. A textual use case description has
for usage modelling by indentified roles and entities, and for interaction modeling
by identified operation. Three main artifacts are used from use-case literature: use
case diagrams, textual use case specifications and sequence diagrams. In Section
5 an example is given and discussed to demonstrate that model checkers can be
successfully used for validating usage models and supporting model-based testing
activities.

4. Model checking

Model checking is a verification technology testing a finite representation model of
the system against a set of requirements [4, 5, 6, 7, 8]. In order to check whether
the system satisfies the expected properties which constitute its specification, either
the system design and the properties has to be modelled formally. A model checker
tool provides an algorithmic mean determining whether the given abstract model
satisfies its specification expressed by a set of temporal logic formulas. The model
checker tools usually support the temporal logic languages Linear Temporal Logic

394 Zs. Borsi, L. Kozma, A. Medve

(LTL) and Computational Tree Logic (CTL). During the verification procedure
the tool achieves an automated search analyzing the state space of the model and
investigates every possible behaviour of the system it represents. Then the tool
informs the user whether the properties are true or not. If the model checker
detects violation, most tools provide the user with a counter-example. A counter-
example represents a possible scenario of the system in the form of a sequence
informing the user about the source of the error. Using model checking you can
not avoid the major problem of this domain called state explosion: exploring the
complete state space often leads to running out time and available memory. After
all this technique proved to be successful and efficient for verifying automatically
large, complex systems in practice.

5. A verification example

Given the use case description of Purchaseltem from the usage model of the vending
machine introduced by Gross [2]. This use case represents all the activities the user
may perform buying an item from the machine. It is the specification of what a
vending machine supposed to do supporting the buying course.

In this example only an excerpt of the above use case description is used. On
this high level of abstraction the Purchaseltem functionality does not consist of
dispensing change or checking the amount of money. The simplified functionality
of the vending machine comprises the activities like inserting coins, selecting the
item that we would like to buy and taking the paid item. Besides the user can abort
the buying process and the machine is waiting for a user when there is nobody using
its services. Table 1 shows the steps of the only buying process our vending machine
accepts.

User inserts sufficient amount of money.

User selects an item on panel or abort the buying course
The selected item is dispensed.

User takes item.

= N =

Table 1: The excerpt of the use case description of Purchaseltem

In the following two task will be investigated which usually have to be solved
when setting up a model checking process. First, the model of the system design
will be constructed and described formally in the input language of the NuSMV
model checker [6]. The next step is identifying and formalizing the properties we are
interested in and want to check. The specification of a system can be determined as
a set of temporal logic formulas. In this example we represented the specification
by CTL formulas. Either the specification and the model of the vending machine
has to rely on nothing else but the information we can retrieve from the use case
description.

The system supports or perform the following activities: insertcoin, selectitem,

On the Verification Problems of the Component-Based Software Development 395

takeitem, abort, idle. In every state through its execution these are the only
activities the vending machine is allowed to perform. Figure 1. shows from which
part of the use case description the parts of NuSMV model and specification can

be derived.
MODULE main]
set of states _ ,
VAR s,\

state {idie.insertcoin.selectitem.abort takeitemy}
ASBIGH

initfetate) = idle initial state

next{stata) =
casg

(state = idie) - {idie insertcoint |
{state = insertcoin) © finsericoin selechitem abart} |
[state = selactitem) | {aksitern} | e
{state = taksitem} {idis} —_—
{state = abor} | {idle} ;

8sac

Description

L

¥

state, next state
pairs

__— Exceptions

40n-funct:ona
R

equirements

FAIRNESS l{state = insertcoin)

SPEC AG((state = insertcoin) -> EF(state = selaclitern)}
SPEC AG((state = insertcoin) - EF(state = abort))

SPEC AG[(state = selactitem) - AF(state = takeitom)) = :

SPEC AG({stete = taksitem) -> AF(state = idle}) temporal logic

SPEC AGI{slate = abort] -> AF(state = idie}) expressions Pre-post
conditions

Figure 1: Mapping the corresponding parts of the use case descrip-
tion to parts of the NuSMV model and specification

i

The model specification in NuSMV consists of the possible values of variables
which determine the space of states, the initial values of the variables and the
transition relation as the input language of NuSMYV is designed for describing Finite
State Machines. The transition relation is expressed by pairs defining the value of
variables in the next state depending the value of variables in the current state.
In this example the variable state can take the values idle, insertcoin, selectitem,
abort, takeitem which imply the possible activities of the vending machine. We
can deduce the initial states from the Trigger part of the use case description, while
the Trigger, Exception and Description parts imply the elements of the state set
of the vending machine. The constrains in the Pre- and Postconditions and in the
Non-functional Requirements can be mapped into temporal logic expressions.

NuSMV offers features for generating possible executions (so called traces) of a
model described in the NuSMYV input language. Traces can be obtained automat-
ically or can be built interactively asking the user in every step to to choose the
next state from a set of possible successors. By running command simulate -pr
10 the system generates a ten-steps trace in which the the next states are picked

396 Zs. Borsi, L. Kozma, A. Medve

randomly in every step. In Figure 2 the output produced by NuSMV represents a
trace where the vending machine repeatedly enters the states insertcoin, selectitem,
takeitem and then goes to the initial idle state.

o+ C:AWINDOWSAsystem32\cmd.exe - NuSMY.exe -int

NuSMU > simulate —pr 18 _:J
sxsxsx® Simulation Starting From State 2.1 HHHRAENRN
Trace Description: Simulation Trace
Trace Type: Simulation

—» State: 2.1 {-

state = idle

—» Input: 2.2 {-

—— Loop starts here

—» State: 2.2 {-

state = insertcoin

—» Input: 2.3 <-

—> State: 2.3 {-

state = selectitem

—» Input: 2_4 <{-

—> State: 2.4 {-

state = takeitem

—>» Input: 2.5 <{-

—» State: 2.5 {—

state = idle

—> Input: 2.6 <-

—» State: 2.6 <{—

—> Input: 2.7 -

—— Loop starts here

—> State: 2.7 {-

state = insertcoin

—> Input: 2.8 -

—»> State: 2.8 {-

state = selectitem

—> Input: 2.9 <{-

—> State: 2.9 {-

state = takeitem

—» Input: 2.18 <-

—>» Btate: 2.18 <-

state = idle

—» Input: 2._.11 {-

—» State: 2.11 <-

state = insertcoin

NuSMU > hd

Figure 2: A possible execution of the model representing a possible
behaviour of the vending machine

Consider the specification below:

FATIRNESS !(state = insertcoin)

SPEC AG((state = insertcoin) -> AF(state = selectitem))
SPEC AG((state = insertcoin) -> EF(state = abort))
SPEC AG((state = selectitem) -> AF(state = takeitem))
SPEC AG((state = takeitem) -> AF(state = idle))

SPEC AG((state = abort) -> AF(state = idle))

1
2
3

4

(
(
(
(
(
(

OO —

)
6

Table 2: The requirements are formalised in CTL

The requirements are expressed in terms as invariants and the single properties
are numbered to make the following discussion about them easier. Property (1)
expresses the natural expectation that it can not be true that the machine is in the
insertcoin state in infinitely many cases. Property (2) asserts that it is always true

On the Verification Problems of the Component-Based Software Development 397

that all executions containing the state insertcoin will lead to the state selectitem.
Property (3) claims that for all states of all traces if the property state = insertcoin
holds then exists a path which leads to a state where state = abort holds.

As our requirements are expressed and the model of the vending machine is
constructed, verifying the model against its specification can be done using NuSMV
model checker. The tool in Figure 3 report us that properties (3)—(6) proved to
be true but on the other hand property (2) is not true. NuSMV informs us by
generating a counter-example, that is a sequence of states that exhibits a valid
behaviour of the model that doesnt satisfy the specification: the sequence begins
in the idle state and repeats the insertcoin-abort-idle states in this order forever.

C:AWINDOWS\system32\cmd.exe - NuSMY.exe -int

=xx op email to <nusmu—users@irst.itc.it>.
wx3% Please report bugs to <nusmvPirst.itc.it>.

=x#% This version of NuSMU is linked to the MiniSat SAT solver.
=xx See http:/ wvuw_cs._chalmers._se /Cs/ResearchsFormalHethods-HiniSat
#x% Copyright <c> 2883-2085,. Niklas Een,. Niklas Sorensson

NMufHMU > process_model —i vending_machine.smu

Reachable States already enahbhled.

— specification AG (state = insertcoin —> AF state = selectitem?> is false
— as demonstrated by the following execution segquence

Trace Description: CTL Counterexample

Trace Type: Counterexample
—» State: 1.1 <—

state = idle

—=>» Input: 1.2 <-

—— Loop starts here

—» State: 1.2 {-

state = insertcoin

—>» Input: 1.3 <-

—» State: 1.3 -

state = abort

—» Input: 1.4 <—

—> State: 1.4 <-

state = idle

—>» Input: 1.5 <-

—» State: 1.5 <-

state = insertcoin

—— specification AG (state
—— specification AG {(state
— specification AG (state
—— gpecification AG (state

ingsertcoin —» EF state = abort) isz true
selectitem —> AF state = takeitem} is true
takeitem —> AF state = idle) is true

abort —> AF state = idle) is true

Figure 3: A counter-example produced by NuSMV

One can say that the model of the vending machine is not correct. This statement
is not meaningful. The only thing we can declare that the model of the system
and the specification does not match. Correctness is a relative notation, assertions
like “the system is not correct” only make sense with respect to a statement, to the
specification of the system. Actually in this case property (2) was too rigourous
omitting the possible behaviour that the buying process can be aborted. In fact in
the first attempt we deliberately expressed a specification which can be violated.
Our goal was to force the model checker to produce a counter-example which of
course does not persuade the costumer that the system performance is sufficient.
On the contrary this reported discrepancy exposing a case, a possible scenario in
which the implementation violates the users’s intent.

In our improved attempt we consider the same system, but modify property (2)

398 Zs. Borsi, L. Kozma, A. Medve

and keep everything (including the model and other properties) unchanged:

FAIRNESS !(state = insertcoin)

SPEC AG((state = insertcoin) -> EF(state = selectitem))
SPEC AG((state = insertcoin) -> EF(state = abort))
SPEC AG((state = selectitem) -> AF(state = takeitem))
SPEC AG((state = takeitem) -> AF(state = idle))

SPEC AG((state = abort) -> AF(state = idle))

In this case the model checker tell us that all the properties are true, which means
the model satisfies the desired specification. The model is correct to the Purcha-
seltem’s specification.

In our approach both the model and the specification were built manually from
the given use case description. At the low level of abstraction the counter-examples
produced by NuSMV model checker can be difficult to understand as the model
excludes the irrelevant details. In general understanding the row output from the
NuSMYV needs knowledge about traces and the model itself which an end user not
necessarily has. A research between the University of Queensland and Queensland
Rail[9] used model checking for the verification of railway interlocking designs.
Their approach derived the NuSMV model and specification automatically from
the system design and the requirements which were given in standard formats.
The propoerties they checked were avoidence of train derailments and collisions.

6. Conclusion and future work

This paper has described an approach for verifying the usage model using the
NuSMV model checker. It has been pointed out that model checking can signif-
icantly contribute to the early detection of faults and errors in the early design
phases. At the level of use case model it is still not decided which functionality of
the system will be realised in software and in hardware. In this way verifying the
usage model can be useful for determining errors even in the hardware.

There are a number of issues we plan to investigate in the near future. First, we
will move toward more concrete representation and translate the abstract models
in the input language of the NSMV tool in order to verify them. Second, we plan
to use model checker to retrieve test sequence generations from the various models.

References

[1] C. Atkinson et al. Component-Based Product-Line Engineering with UML. Addison-
Wesley, London, 2002.

[2] Haus-Gerhard Gross. Component-Based Software Testing with UML. Springer-Verlag
Berlin Heidelberg, 2005.

[3] C. Szyperski. Component Software, Beyond Object-Oriented Programming. Addison-
Wesley, London, second edition, 2002.

On the Verification Problems of the Component-Based Software Development 399

4]

5]

[6]
(7]

(8]

E.M. Clark Jr., O. Grumberg and D.A. Peled. Model Checking. The MIT Press, Cam-
bridge 2000

Bucchiarone, H. Muccini, P. Pellicione, and P. Pierini. Model-Checking plus Testing:
from Software Architecture Analysis to Code Testing. Lecture Notes in Computer Sci-
ence, LNCS, vol. 3236, pp. 351-365, 2004.

NuSMV Model Checker http://nusmv.irst.itc.it

Akos David,- Laszlo Kozma. Educational aspects of incremental model checking.
in Proceedings of the 3rd International Multi-Conference on Society, Cybernetics
and Informatics, Vol 2, pp. 190-194, 10-13, 2009, Orlando, Florida, USA, ISBN-
10: 1-934272-73-6, ISBN-13: 978-1-934272-73-2., http://www.iiis.org/CDs2008/
CD2009SCI/EISTA2009/index.asp?id=0\&area=4

Kupferman, O., Vardi, M.Y., Wolper, P. Module checking. Information and Compu-
tation 164(2), 322-344, 2001.

L. van den Berg, P. Strooper, W. Johnson. An Automated Approach for the Interpre-
tation of Counter-Examples. ENTCS 174 (2007) 19-35.

Zsolt Borsi, Laszlo Kozma
E6tvos Lorand University
1117 Budapest

Pazmany Péter sétany 1/C.
Hungary

e-mail:

bzsr@inf.elte.hu
kozma@ludens.elte.hu

Anna Medve
University of Pannonia
8200 Veszprém
Egyetem u. 10.

Hungary

e-mail: medve@almos.vein.hu

