
Proceedings of the 8th International Conference on Applied Informatics
Eger, Hungary, January 27–30, 2010. Vol. 2. pp. 383–390.

Syntax Check of Embedded SQL in C++
with Proto

Zalán Szűgyi, Zoltán Porkoláb

aDepartment of Programming Languages and Compilers, Eötvös Loránd University
Pázmány Péter sétány 1/C H-1117 Budapest, Hungary

e-mail:lupin@ludens.elte.hu

Abstract

The SQL is the most frequently used language to manipulate databases.
However SQL is not a general purpose programming language, thus it is not
appropriate to develop applications with. In the most cases SQL statements
are embed into another programming language, like C++, Java or C#, al-
lowing us to describe the general algorithms with a general purpose language
and the database specific ones with SQL. Beside of the obvious benefit this
solution has some disadvantages too. The compiler of the general purpose
language do not know the syntax of SQL, thus it is not able to perform syn-
tactical and semantical checking on SQL code in compilation time. That way,
the errors of SQL codes are figured out only in run time which lowers the
quality of our code and makes debugging more difficult.

However the template facility of C++ programming language – using it
in a special way – allows us to run algorithms in compilation time. This
paradigm is called Template Metaprogramming. With proper metaprograms
the C++ compiler can be forced to check the syntax of SQL statements.

In this paper we present a solution how perform SQL syntax checking of
embedded SQL statements during the compilation of C++ source codes.

1. Introduction

There are several fields of software development where the main parts of projects
are written in general-purpose programming languages, but some parts exist to
handle in special way. For these purposes, the most usual and efficient strategy
is applying domain specific languages (DSL) [8]. DSL is a programming language
or specification language dedicated to a particular problem domain, a particular
problem representation technique, and/or a particular solution technique.

The general-purpose progamming languages allow to apply DSL code into its
source code different way. The most common is to insert DSL source code into the

383

384 Z. Szűgyi, Z. Porkoláb

original source as a string literal, and a run-time interpreter will parse and execute it
when the program is running. The C++ programming language behaves similarly.
With this solution it is very easy to insert DSL code into the source code, but it
is decreases the quality of the code: While the general-purpose compiler deals the
DSL code as a string literal, during the compile time the possible syntactical errors
will be hidden. They can be figured out only in run-time, causing either excpetions
or even worse undeterministic or unexpected program behaviour.

In C++ programming language [11], while the general way is to handle DSL
code as a string literal, it is possible to force the compiler to perform syntax check
of DSL source code in compile time. Doing this we need to define the DSL itself
and the DSL code in a special way relying on the template system of the language
and Templata Metaprogramming technigues [1]. That way the possible errors in
DSL source code are emitted in compile time, the error messages can be more clear
and detailed, making the bugfix easier and faster.

Since the style of metaprograms in C++ programming language is unusual
and difficult, it requires high programming skills to write. Besides, it is sorely
difficult to find errors in it. However tools and libraries are available to help design,
develop and debug them. The Boost 3rd party C++ library [7] provides a utilities
for metaprogramming called Boost::MPL [12]. Also in Boost there are libraries
to provide facilities to define DSLs which the C++ compiler can parse. These
libraries are Boost::Spirit [13] and Boost::Proto [14]. Porkoláb et al. provided a
metaprogram debugger tool [9] in order to help finding bugs.

The Structured Query Language (SQL) [6] is one of the most well known and
widely used DSL languages for managing data in relational database management
systems [2], and originally based upon relational algebra. Its scope includes data
query and update, schema creation and modification, and data access control.
There are several database systems and each of them supports the most known
general purpsose programming languages, providing third party libraries, to access
databases from source code. However these solutions also perform syntactical and
semantical checks only in run-time.

In this paper we provide a solution how to force C++ compiler to perform
syntax check on embedded SQL language. We implemented a subset of the SQL
language called miniSQL based on Boost::Proto. In our solution the elements of
the miniSQL grammar are valid C++ entities, thus they has a stronger connection
with the language then just be a string literal.

The paper is organized as follows. In section 2 we give a short description of
the template metaprogramming paradigm. The section 3 shows the definition of
our language. We provide the implementation details in section 4. An example
comes in section 6, and the section 7 presents the conclusion and future work.

2. Template Metaprograms

Those programs, which run at compile time are called template metaprograms [1].
Template metaprograms stand for the collection of templates, their instantiations

Syntax Check of Embedded SQL in C++ with Proto 385

and specializations, and perform operations at compile time. The basic control
structures like condition and iteration appear in them in a functional way [10].
The iterations in metaprograms are applied by recursion. The template metapro-
gramming is proved to be Turing complete [4]. See the following example where a
template metaprogram computes the factorial of 5.

template<int N>
struct factorial {
enum { value = N * factorial<N-1>::value };

};

template<>
struct factorial<0> {
enum { value = 1 };

};

int main() {
int result = factorial<5>::value;

}

To initialize the variable result here, the expression factorial<5>::valuehas
to be evaluated. As the template argument is not zero, the compiler instantiates
the general version of the factorial template with 5. The definition of value is N
* factorial<N-1>::value, hence the compiler has to instantiate the factorial
again with 4. This chain continues until the concrete value becomes 0. Then, the
compiler choses the special version of factorial where the value is 1. Thus, the
instantiation chain is stopped and the factorial of 5 is calculated. This algorithm
runs while the compiler compiles the code. Hence, this example code is equivalent
to int result = 120.

The condition is implemented by a template structure and its specialization.

template<bool cond_, typename then_, typename else_>
struct if_ {
typedef then_ type;

};

template<typename then_, typename else_>
struct if_<false, then_, else_> {
typedef else_ type;

};

The if_ structure has three template arguments: a boolean and two abstract
types. If the cond_ is false, then the partly-specialized version of if_ will be
instantiated, thus the type will be bound by the else_. Otherwise the general
version of if_ will be instantiated and type will be bound by if_.

386 Z. Szűgyi, Z. Porkoláb

Since the style of metaprograms is unusual and difficult, it requires high pro-
gramming skills to write. Besides, it is sorely difficult to find errors in it. Porkoláb
et al. provided a metaprogram debugger tool [9] in order to help finding bugs.

3. Definition of miniSQL Language

In this chapter we present the EBNF [3] definition of our miniSQL language.

S ::= select_part from_part | select_part from_part where_part
select_part ::= SELECT g_S | select_part, g_S
from_part ::= FROM g_S | from_part, g_S
where_part ::= WHERE condition_list
condition_list ::= condition | logical_and | logical_or
logical_and ::= condition_list AND condition_list
logical_or ::= condition_list OR condition_list
condition ::= g_S op g_S
op ::= == | < | <= | > | >= | !=
g_S ::= [A-z][A-z0-9]*

4. Implementation Details

Our language definition is based on Boost::Proto [14], which is a third party library
to help defining DSLs as part of the C++ language. The DSLs defined that way
are able to be checked by the C++ compiler, thus the possible error messages are
detected in compile time. As the Boost::Proto is the base of our implementation,
the terminal and non terminal symbols of the miniSQL grammar are special but
valid types of C++, while the rules are defined by specialized template types. This
approach implies that, all parts of the miniSQL grammar are C++ expressions.

This solution has an unusual consequence: the DSL must rely only on the
original operators of C++. We can redefine their behaviour or exclude some of
them, but it is not possible to introduce new ones or modify their precedences.
Hereby the syntax of miniSQL slightly different as the original SQL syntax.

The following code snippet shows some rules of miniSQL grammar:

struct miniSQL_grammar :
proto::or_<

proto::plus<g_selectpart, g_frompart>,
proto::plus<

proto::plus<
g_selectpart,
g_frompart

>,
g_wherepart

>

Syntax Check of Embedded SQL in C++ with Proto 387

> {};

struct g_condition_list :
proto::or_<

g_S,
g_logical_and,
g_logical_or

> {};

The struct miniSQL_grammar is the start symbol. The template type proto::or_
indicates a selection, thus the miniSQL grammar element either can be a Select
and From concatenated by operator+, or can be Select, From and Where. The
proto::plus template type refer to the operator+. The definition of other rules
are similar, where proto::shift_left refers to the operator« and proto::comma
to the operator,. The g_S nonterminal refers to the identifiers and the literals of
the miniSQL. We present the way to handle these entities in the next chapter.

5. Handling Keywords, Identifiers and Literals

In our implementation of miniSQL all the grammar elements are valid C++ types.
The operators are redefined C++ operators. The problem is that an identifier
can be almost any sequence of alphanumerical characters. Predefining all of these
identifier is impossible. The proto library provides special type which can refer to
any kind of string literal in the embedded language. We can use that type until
all the subexpression of our embedded language has at least one proto type as an
argument. Otherwise the original operator will be applied. See the following code
snippet:

struct g_identifier :
proto::terminal<proto::convertible_to<std::string> > {};

struct g_literal :
proto::terminal<proto::convertible_to<std::string> > {};

//...
"field_name" == "concrete_value" // (*)

This code snipped shows that every king of C++ language element which are
convertible to std::string can be stand on the place of g_identifier or g_literal.
The problem occures when we want tho write a restriction of an SQL statement
for a given column in a WHERE clause. Both of the name of field and the value of
restriction can be a string literal. See the marked line (*). While none arguments
of the equality operator are Proto type the original operator== is applied instead
of the operator== redefined in our grammar.

388 Z. Szűgyi, Z. Porkoláb

To solve this problem we implemented a wrapper class, which can wraps any
string literals and turn their type into a Proto type. See the main parts of the
wrapper classes below:

template<bool Complete>
struct _S : DisabledOperators<_S<false> >
{

_S(const char* s) : str(s);
_S(const std::string& s) : str(s);
template <typename T>
_S(const T& d);
operator std::string() const;
std::string str;

};

template<>
struct _S<false> : DisabledOperators<_S<false> >
{

/* same constructors as in previous struct */
_S<true> operator==(const _S<false>& rarg) const;
_S<true> operator<(const _S<false>& rarg) const;
/*... other necessary operators */

};

struct S : _S<false>;

The template struct _S is wrapper class. It can wrap any values which are con-
vertible to std::string. The template argument Complete indicates whether this
wrapper class is parsed during the evaluation of our miniSQL code.

While in C++ it is possible to chain equality operators (e.g.: a == b == c), we
want to disable it in our language, therefore we defined the corresponding operators
only in struct _S specialized to false. Since these operators returns _S<true> the
next step in evlauation chain will fail.

The struct DisabledOperators provides better understandable error messages
if someone tries to use inappropriate operators.

At last the struct S derived from struct _S<false> just to make wrapping
easier.

The keywords are simple Proto types:

struct Select {};
struct From {};
struct Where {};

proto::terminal< Select >::type const SELECT = {{}};
proto::terminal< From >::type const FROM = {{}};

Syntax Check of Embedded SQL in C++ with Proto 389

proto::terminal< Where >::type const WHERE = {{}};

//...

6. Example

In this chapter we present a small SQL query, where we want the receive name of
the students whose studying at ELTE and living in Eger. The first code snippet is
the query written in normal SQL syntax, and the second one is the same written
in out miniSQL language.

SELECT name
FROM students
WHERE university = ’ELTE’ and city = ’Eger’;

(SELECT << "name") +
(FROM << "students") +
(WHERE << ((S("university") == S("ELTE))

-AND- (S("city") == S("Eger")))
);

7. Conclusion and Future Work

In this article we presented an embedded language of C++, called miniSQL and
it is a subset of SQL. The main feature of this language is the grammatical rules,
the terminals and the nonterminals are valid C++ types and expressions. That
allows us to force the C++ compiler to perform syntactical check of miniSQL
in compile time. Hereby the possible errors turns out in compile time making
the correction easier and more efficient. Our solution is based on Boost::Proto
and template metaprogramming paradigm. Gil et al provided another solution to
handle embedded sql statements in C++ [5].

Our future work is to extend our language to get the same expression power
as SQL has. We would like to improve our parser to be able to perform some
semantical check too. We plan to improve our error messages to provide more
sophisticated information about errors.

References

[1] Abrahams, D., Gurtovoy, A.: C++ Template Metaprogramming: Concepts, Tools,
and Techniques from Boost and Beyond. Addison-Wesley (2004)

[2] Andrews, T., Harris, C.: Combining language and database advances in an object-
oriented development environment. SIGPLAN Not. 22, 12 (Dec. 1987), 430-440

390 Z. Szűgyi, Z. Porkoláb

[3] Backus, J. W. et al.: Revised Report on the Algorithmic Language Algol 60

[4] Czarnecki, K., Eisenecker, U.W.: Generative Programming: Methods, Tools and
Applications. Addison-Wesley, Reading (2000)

[5] Gil, J. (Y.), Lenz, K.: Simple and safe SQL queries with c++ templates, in proc. of
Simple and safe SQL queries with c++ templates (2007), The ACM Digital Library
pp. 13–24, (2007)

[6] Groff, J. R., Weinberg, P. N.: SQL, the complete reference.

[7] Karlsson, B.: Beyond the C++ Standard Library, An Introduction to Boost.
Addison-Wesley, Reading (2005)

[8] Parr, T.: Language Implementation Patterns: Create Your Own Domain-Specific and
General Programming Languages (Pragmatic Programmers). Pragmatic Bookshelf,
2009.

[9] Porkoláb, Z., Mihalicza, J., Sipos, Á.: Debugging C++ Template Metaprograms, in
proc. of Generative Programming and Component Engineering (GPCE 2006), The
ACM Digital Library pp. 255–264, (2006)

[10] Sipos, Á., Porkoláb, Z., Pataki, N., Zsók, V.: Meta<Fun> – Towards a Functional-
Style Interface for C++ Template Metaprograms, in Proceedings of 19th Interna-
tional Symposium of Implementation and Application of Functional Languages (IFL
2007), pp. 489–502

[11] Stroustrup, B.: The C++ Programming Language Special Edition. Addison- Wesley,
Reading (2000)

[12] http://www.boost.org/doc/libs/1_42_0/libs/mpl/doc/index.html

[13] http://boost-spirit.com/home/

[14] http://www.boost.org/doc/libs/1_37_0/doc/html/proto.html

