
Proceedings of the 8th International Conference on Applied Informatics
Eger, Hungary, January 27–30, 2010. Vol. 2. pp. 367–374.

C++ Standard Template Library by
Ranges*

Norbert Pataki

Dept. of Programming Languages and Compilers,
Fac. of Informatics, Eötvös Loránd University, Budapest

e-mail: patakino@elte.hu

Abstract
The C++ Standard Template Library (STL) is the most popular library

based on the generic programming paradigm. STL is widely-used, because
the library is part of the C++ Standard. It consists of many useful generic
data structures and generic algorithms, that are fairly irrespective of the used
container. Iterators bridge the gap between containers and algorithms. As a
result of this layout the complexity of the library is greatly reduced and we
can extend the library with new containers and algorithms simultaneously.

Iterators introduced many different problems. First, hard to write hand-
crafted iterators. Some people argue for the range types which can be a
superior abstraction. Ranges can be aggregated in a better way. They have
better checking abilities.

In this paper we present an overview about the differences between ranges
and iterators. We examine a set of algorithms with ranges. Creating new
range types is also considered.

Keywords: STL, iterators, ranges

MSC: 68N19 Other programming techniques

1. Introduction

The C++ Standard Template Library (STL) was developed by generic program-
ming approach [7, 16]. In this way some containers defined as class templates
and many algorithms can be implemented as function templates. Furthermore,
algorithms are implemented in a container-independent way, so one can use them
with different containers [20]. C++ STL is widely-used because it is a very useful,
standard C++ library that contains many useful containers (like list, vector, map,
etc.), many algorithms (like sort, find, count, etc.) among other utilities.

*Supported by TÁMOP-4.2.1/B-09/1/KMR-2010-0003.

367

368 N. Pataki

The STL was designed to be extensible. We can add new containers that can
work together with existing algorithms. On the other hand, we can extend the set
of algorithms with a new one that can be work together with existing containers.
Iterators bridge the gap between containers and algorithms [5]. STL also includes
some adaptor types which transform standard elements of the library for a different
functionality [1, 14].

However, the usage of C++ STL does not mean bugless or error-free code
[9]. Contrarily, incorrect application of the library may introduce new types of
problems [19]. One of the root causes is that algorithms take two iterators as
the input interval. One range is passed by two objects. Parameters are handled
independently and the connections between them are analyzed in a very difficult
way.

This paper is organized as follows. Some known iterator-related problems are
described in section 2. The notation of ranges is introduced and advantages of
ranges are present in section 3. A range-based STL implementation can be found
in section 4. After all, we conclude our results and give some directions about the
future work in section 5.

2. General problems

Some problems come from the STL’s generic approach. This approach prepossesses
the software metrics [19]. In this section we present some typical STL-related
mistakes.

One the most trivial problem is according to the algorithms’ precondition [18].
For example, some algorithms need sorted input and they take advantage of sort-
edness, but input is not checked neighter at compilation time nor at runtime.
Algorithms like binary_search, lower_bound, equal_range result in undefined
behaviour when they called on an unsorted range. However, it is very difficult to
check the input’s sortedness without algorithm modification [13].

Another typical problem is related to the iterator invalidation [10]. This appears
when a contiguous-memory container (for example, vector) reallocates itself when
its capacity is full. We have constructed iterators before the reallocation, and use
one of these iterators after the reallocation results in an undefined behaviour. Let
us consider the following code snippet:

std::vector<int> v;
v.push_back(1);
std::vector<int>::iterator it = v.begin();
// vector’s capacity changes:
for(int i = 0; i < 100; ++i)
v.push_back(i);

int o = *it;

C++ Standard Template Library by Ranges 369

The main weakness of iterators that every algorithms take two iterators as one
interval [4]. For instance, here are some declarations from the STL:

template <class InputIterator, class UnaryFunction>
UnaryFunction for_each(InputIterator first,

InputIterator last,
UnaryFunction f);

template <class RandomAccessIterator>
void sort(RandomAccessIterator first,

RandomAccessIterator last);

template <class ForwardIterator, class LessThanComparable>
bool binary_search(ForwardIterator first, ForwardIterator last,

const LessThanComparable& value);

Another typical iterator related bug appears when one misuses output iterators:

std::vector<int> v;
v.push_back(3);

std::list<int> l;
std::copy(v.begin(), v.end(), l.begin());

The elements of the vector should be copied to the list in the previous code, but
it causes runtime error. copy assumes that it can copy to the output, there is allo-
cated memory, but in an empty list no one allocates space for the elements. It does
not causes problem, if the list’s size is not less than vector’s size. back_inserter
and front_inserter iterators can be used for to force push_back and push_front
method, respectively.

In this section we described a set of problems which comes from the generic
approach of the STL.

3. Ranges

Range is the abstraction over iterators. Ranges are introduced in the D program-
ming language.

The simplest range is the notation of input ranges. Their interface can be
defined in the following way:

template <class T>
class InputRange
{
void pop_front();
T& front();
bool empty() const;

};

370 N. Pataki

We can express the very same functionality with two input iterators and one
input range in a different syntax. But as range is a type, one can check many
properties. For instance, sorted range’s constructor can test if the range is checked
and it ensures the correct behaviour without algorithm modification.

A typical implementation for contiguous-memory range is the following:

template <class T>
class ContRange
{
T *first, *last;

public:
bool empty() const
{
return first == last;

}

void pop_back()
{
++first;

}

T& front()
{
return *first;

}
};

This way we can easily check range-related properties. For example, we can
make sure if front is called on empty range:

T& front()
{
assert(!empty());
return *first;

}

Call of algorithms with mixture of ranges is much more easier by ranges than
by iterators. For instance, let us consider the following code fragment:

template <class R1, class R2>
R2 copy(R1 r1, R2 r2);

std::vector<float> v;
std::list<int> s;
std::deque<double> d;

std::copy(chain(v, s), d);

C++ Standard Template Library by Ranges 371

Let us consider a copy algorithm which copies the first to the second range and
returns the untouched portion of r2, and we have a function called chain which
returns a range which is the concatenation of the arguments. To describe this
scenario in an STL-way is very difficult.

Iterator hierarchy is grouping of iterator based on iterators’ capabilities. Iter-
ator hierarchy cannot be appeared by language constructs [23], but it can appear
by range types and inheritance.

One can easily implement an adaptor type, that reverses the traversal:

template<class R>
class Retro
{
R r;

public:
bool empty() const
{
return r.empty();

}

void pop_front()
{
return r.pop_back();

}

void pop_back()
{

return r.pop_front();
}

E<R>::Type& front()
{
return r.back();

}

E<R>::Type& back()
{
return r.front();

}

};

Iterators’ advantage is the reverse-compatibility with the built-in arrays because
of the pointer-arithmetic. Every standard algorithms work with arrays too.

In this section we present ranges’ basic idea. We argue for ranges, because they
support range-related properties that iterators cannot do among other advantages.

372 N. Pataki

4. C++ Standard Template Library by Ranges

In this section we overview a potential implementation of the STL algorithms in
which ranges can be used instead of iterators.

For instance, we can write our for_each algorithm in the following:

template <class Range, class Fun>
Fun for_each(Range r, Fun f)
{
while (!r.empty())
{
f(r.front());
r.pop_front();

}
}

This implementation is quite straightforward, because it takes two parameters:
the range and a functor object to be called on the elements in the range.

There are some pitfalls with this implementation. In this implementation list
and deque containers can be work as ranges, but vector is not allowed.

Every STL algorithms can be defined in this way too. It does not constraint
the genericity of algorithms. The library is kept generic.

Usage of standard stream iterators are lengthy, uncomprehensible, unmainten-
able. With the help of ranges these applications can be easier too. Let us consider
the following two different implementations of the similar code which copies the
standard input to standard output:

std::copy(std::istream_iterator<char>(std::cin),
std::istream_iterator<char>(),
std::ostream_iterator<char>(std::cout));

copy (istream_range<char>(std::cin),
ostream_range<char>(std::cout));

In this section we argue for ranges by present an STL implementation by ranges.
Many algorithms can be called easier in this way.

5. Conclusion and Future Work

STL is widely-used generic library in which iterators play an important role. The
STL itself introduces new potential errors based on the iterators. Unfortunately,
these errors cannot handle in a non-intrusive way.

The ranges are an abstraction over iterators. The most important feature of
ranges that properties can be checked in the range type. An other feature is the

C++ Standard Template Library by Ranges 373

mixture of ranges. STL algorithms can be rewritten by ranges. Usage of algorithms
can be easier especially when one deals with stream iterators.

Abstraction penalty occurs when ranges are used. Measuring the overhead of
the runtime checks is necessary. In this paper we do not deal with output ranges.
An elegant interface is necessary when output ranges are used.

References

[1] Alexandrescu, A.: “Modern C++ Design” Addison-Wesley (2001)
[2] Austern, M. H.: “Generic Programming and the STL: Using and Extending the C++

Standard Template Library”, Addison-Wesley (1998)
[3] Austern, M. H., Towle, R. A., Stepanov, A. A.: Range partition adaptors: a mecha-

nism for parallelizing STL, in ACM SIGAPP Applied Computing Review 1996 4(1),
pp. 5–6,

[4] Baus, C., Becker, T.: Custom Iterators for the STL, in Proc. of First Workshop on
C++ Template Programming.

[5] Becker, T.: STL & generic programming: writing your own iterators, C/C++ Users
Journal 2001 19(8), pp. 51–57.

[6] Biczó, M., Pócza K., Forgács, I., Porkoláb, Z.: A New Concept of Effective Regression
Test Generation in a C++ Specific Environment, Acta Cybernetica 2008 18(3), pp.
408–501.

[7] Czarnecki K., Eisenecker, U. W.: “Generative Programming: Methods, Tools and
Applications,” Addison-Wesley (2000)

[8] Das D., Valluri, M., Wong, M., Cambly, C.: Speeding up STL Set/Map Usage in
C++ Applications, LNCS 5119 (2008), pp. 314-321.

[9] Dévai, G., Pataki, N.: Towards verified usage of the C++ Standard Template Library,
In Proc. of The 10th Symposium on Programming Languages and Software Tools
(SPLST) 2007, pp. 360–371.

[10] Dévai, G., Pataki, N.: A tool for formally specifying the C++ Standard Template
Library, In Annales Universitatis Scientiarum Budapestinensis de Rolando Eötvös
Nominatae, Sectio Computatorica 31, pp. 147–166

[11] Gregor, D., Järvi, J., Siek, J., Stroustrup, B., Dos Reis, G., Lumsdaine, A.: Concepts:
linguistic support for generic programming in C++, in Proc. of the 21st annual ACM
SIGPLAN conference on Object-oriented programming systems, languages, and ap-
plications (OOPSLA 2006), pp. 291–310.

[12] Gregor, D., Schupp, S.: Stllint: lifting static checking from languages to libraries,
Software - Practice & Experience, 2006 36(3), pp. 225–254

[13] Järvi, J., Gregor, D., Willcock, J., Lumsdaine, A., Siek, J.: Algorithm specialization
in generic programming: challenges of constrained generics in C++, in Proc. of the
2006 ACM SIGPLAN conference on Programming language design and implementa-
tion (PLDI 2006), pp. 272–282.

[14] Matsuda, M., Sato, M., Ishikawa, Y.: Parallel Array Class Implementation Using
C++ STL Adaptors, In Proc. of the Scientific Computing in Object-Oriented Parallel
Environments, LNCS 1343, pp. 113-120.

374 N. Pataki

[15] Meyers, S.: “Effective STL - 50 Specific Ways to Improve Your Use of the Standard
Template Library,” Addison-Wesley(2001).

[16] Musser, D. R., Stepanov, A. A.: Generic Programming, in Proc. of the International
Symposium ISSAC’88 on Symbolic and Algebraic Computation, LNCS 358 1988,
pp. 13–25.

[17] Pataki, N., Porkoláb, Z., Istenes, Z.: Towards Soundness Examination of the C++
Standard Template Library, In Proc. of Electronic Computers and Informatics, ECI
2006, pp. 186–191.

[18] Pataki, N., Szűgyi, Z., Dévai, G.: C++ Standard Template Library in a Safer Way ,
In Proc. of Workshop on Generative Technologies 2010 (WGT 2010), pp. 46-55.

[19] Porkoláb, Z., Sipos, Á., Pataki, N.: Inconsistencies of Metrics in C++ Standard
Template Library, In Proc. of 11th ECOOP Workshop on Quantitative Approaches
in Object-Oriented Software Engineering QAOOSE Workshop, ECOOP 2007, Berlin,
pp. 2–6

[20] Stroustrup, B.: “The C++ Programming Language”, Addison-Wesley(1999)

[21] Szűgyi, Z., Sipos, Á, Porkoláb, Z: Towards the Modularization of C++ Concept Maps,
in Proc. of Workshop on Generative Programming (WGT 2008), pp. 33–43.

[22] Zolman, L.:An STL message decryptor for visual C++, In C/C++ Users Journal,
2001 19(7), pp. 24–30.

[23] Zólyomi, I., Porkoláb, Z.: Towards a General Template Introspection Library, in
Proc. of Generative Programming and Component Engineering: Third International
Conference (GPCE 2004), LNCS 3286, pp. 266-282.

Norbert Pataki
Pázmány Péter sétány 1/c., H-1117 Budapest, Hungary

