
Proceedings of the 8th International Conference on Applied Informatics
Eger, Hungary, January 27–30, 2010. Vol. 2. pp. 343–350.

How #includes Affect Build Time in Large
Systems

József Mihalicza

Department of Programming Languages and Compilers, Eötvös Loránd University

Abstract

The #include concept, present in numerous mainstream languages like
C, C++, Objective C, has unexpectedly bad effects on build times. Many
current large systems using the #include technique suffer from unacceptable
long build procedure. Long builds waste many valuable manhours or even
man months, elongate development and as a result make keeping deadlines
harder. Using a different approach in a large system is proven to result in
even 10 times faster builds. This paper compares various widely used freeware
software packages and shows both the overhead the #includes cause and the
gain achieved by applying the mentioned approach.

Keywords: C++, build time

1. Introduction

C++ [1] is a widely spread programming language, many industrial projects are
developed in it. Though it has numerous advantages, the long compilation time is
one of its drawbacks, especially if we compare it to other languages.

The total build time of a software system affects the time a compilation error is
identified in continuous integration [2] environments. From a developer’s perspec-
tive the time of incremental builds is what rather counts, but after a synchronisation
with the source repository a full build might be necessary. The probability of that
grows with the number of developers working on the same source base. If the QA
team works based on packages made by a build automation tool (e.g. CruiseCon-
trol) the minimum time a new package can get to them is also determined by the
full build time.

Bad build performance leads to various consequences. The long waits during a
develop-test-develop-test cycle can distract the developer’s focus. In case of widely
used headers (e.g. one included in the precompiled header) sometimes a worse
solution is chosen intentionally merely to avoid long compilation. These choices
are rarely replaced by the optimal ones afterwards.

343



344 J. Mihalicza

With template [3] metaprograms one can make the compiler run even quite
complex algorithms [8], C++ templates are proven to be Turing complete [4]. In [6]
a profiler framework is presented to detect slow components in these metaprograms.

In [7] the #include mechanism is proven to be one of the main sources of bad
build performance. There a program transformation is presented which can help
in radically reducing the full compilation time.

The purpose of this paper is the evaluation of that program transformation
method by applying it to three open source C++ libraries. In section 2 I briefly
show the method itself. Then in section 3 I describe what exact libraries I chose
for the test and present the steps of their transformation, mainly focusing on the
problematic points. Section 4 summarizes and discusses the results in numbers.
Section 5 contains a brief conclusion and some ideas for future work.

2. The method

The idea is the following: instead of compiling numerous .cpp files one by one
separately, we concatenate them together using the #include directive and compile
at once. This way if there is a header file included in many original source files, it
will be processed only once.

The build flow changes from:

source1
prepr.−−−−→ preprocessed1

compiler−−−−−−→ object1
...

...
...

sourcen
prepr.−−−−→ preprocessedn

compiler−−−−−−→ objectn





linker−−−−→ target

to:

source1

:
sourcen





script or−−−−−−→
manually

#include "source1"
:

#include "sourcen"

linker ◦ compiler ◦ prepr.−−−−−−−−−−−−−−−−−→ target

For example, instead of compiling

lib_1_file_a.cpp
lib_1_file_b.cpp
lib_1_file_c.cpp

separately, we will have a file, to say lib_1_all.cpp with the following contents:

#include "lib_1_file_a.cpp"
#include "lib_1_file_b.cpp"
#include "lib_1_file_c.cpp"

This transformation can bring in new errors because of different reasons. Section
3 discusses them in details. Moreover, this new configuration can hide serious de-
pendency violations. As the code evolves, obviously erroneous code fragments can



How #includes Affect Build Time in Large Systems 345

remain unrecognized and cause unforeseen trouble later. To avoid this side effect
it is advisable to maintain also a configuration that does not apply the described
transformation.

Integrated development environments (IDE) raise the question of whether to
remove the original source files from the project. Many of them allows exclusion of
source modules piecewise within a configuration. If this is not possible, having both
the ..._all.cpp files and the original sources in the project would result in double
compilation and double definition of all symbols later at link time. Removing the
sources, however, may prevent the IDE from helping the developer navigating in
the source files. Fortunately most modern IDEs parse also the included files for
symbols regardless whether they are added to the project. As discussed before,
maintaining a transformationless configuration is recommended. Either this can be
achieved by excluding the original and the ..._all.cpp files in two separate build
configurations respectively, or by using preprocessor directives as shown below:

lib_1_all.cpp: lib_1_file_a.cpp:
#ifdef FAST_COMPILATION #ifndef FAST_COMPILATION
#undef FAST_COMPILATION original contents
#include "lib_1_file_a.cpp" of lib_1_file_a.cpp
#include "lib_1_file_b.cpp"
#define FAST_COMPILATION #endif
#endif

This latter approach has the advantage that it works in all environments and does
not need a separate build configuration. Though in this case the compiler should
preprocess all source files even in the fast configuration, it will remain fast since
the whole file is disabled and will not include further sources.

In Makefile based projects we can either create a rule for the composition of
the ..._all.cpp files, or just create them manually.

The procedure has an interesting side effect. Having all files included together
into a single file, we get a centralized place where each compilation unit of the
library can be enabled or disabled easily with precompiler directives. Suppose,
for example, that lib_1 has some independent subcomponents, which are not big
enough to be separate libraries, but still we would like to handle them together.
In this case we can dedicate preprocessor directives to these subcomponents and
control their inclusion in the resulting library:

#include "lib_1_base_file_a.cpp"
#include "lib_1_base_file_b.cpp"
#ifdef LIB_1_SUBCOMPONENT1
#include "lib_1_subcomponent_1_file_a.cpp"
#include "lib_1_subcomponent_1_file_b.cpp"
#endif
#ifdef LIB_1_SUBCOMPONENT2
#include "lib_1_subcomponent_2_file_a.cpp"
...



346 J. Mihalicza

3. Transformation case studies

The program transformation described in section 2 has been applied to three open
source libraries:

OpenSceneGraph 2.8.2 3D graphics toolkit

wxWidgets 2.8.10 Widget toolkit for creating GUIs

Xerces 3.0.1 XML parser library

C++ units are not typically designed for being included together, they can use
arbitrary local symbols that are not unique among the source files. Therefore our
transformation easily leads to compilation errors. Based on the experience with the
libraries above, this section presents what modifications may be needed to make
the code compile again after the transformation. We will see what constructs we
have to be careful with when using this technique.

unwanted sources If scripts are used to gather the source files to be included
together, be careful not to add a file that is otherwise not part of the project.
In OpenSceneGraph for example, there is a Matrix_implementation.cpp
which acts like a template. It contains a generic implementation of a matrix
type, where the actual class type is everywhere Matrix_implementation, a
type which is not defined earlier in that file. Matrixd.cpp and Matrixf.cpp
use this generic implementation, defining the Matrix_implementationbefore
including the .cpp:

// specialise Matrix_implementaiton to be Matrixd
#define Matrix_implementation Matrixd
...
// now compile up Matrix via Matrix_implementation
#include "Matrix_implementation.cpp"

This is a pattern [9] for simulating templates. Here I had just to remove the
inclusion of the generic implementation from the ..._all.cpp file.

double definition of inline function The generic matrix implementation, see
above, uses an inline function defined in the .cpp file. After including together
Matrixd.cpp and Matrixf.cpp this inline function was defined twice in the
same compilation unit, which is an error. The solution is a header guard-like
prevention from double definition:

#ifndef Matrix_implementation_cpp_included
#define Matrix_implementation_cpp_included
template <class T> inline T SGL_ABS(T a)
{ return (a >= 0 ? a : -a); }
#endif



How #includes Affect Build Time in Large Systems 347

local symbols with identical names This is the most frequent conflict type.
Originally different compilation units chose the same identifier to denote a
local element. In OpenSceneGraph for example these were mainly typedefs,
static variables and complete classes. I had to assign distinct names for these
variables. In abc.cpp for example I changed

typedef buffered_value< ref_ptr<abc::Extensions> >
BufferedExtensions;
static BufferedExtensions s_extensions;

to

typedef buffered_value< ref_ptr<abc::Extensions> >
abc _BufferedExtensions;
static abc _BufferedExtensions s_abc_extensions;

where abc was one of BlendEquation, BlendFunc, BufferObject etc.

multiply defined macros As the compilation no longer ends at the end of the
source file, we have to add #undef directives for each corresponding #define
introduced in the given unit. Each original source file assumes that no custom
macros (except for those coming from the environment or make file) are
defined at the 0. position of the file. It can happen that we do not even
notice that a macro from a previous file remained active in the next included
file. These bugs are very difficult to find afterwards, so the best is to follow
the simple rule of thumb: #undef every macro at the end. This step can
easily be automated though it is not that exhaustive to do manually.

macro redefinition In some files I had to put #ifndef guards around the defi-
nition of an otherwise standard macro. Probably the original intent was not
to include the whole world because of this sole macro definition.

conflict with a header included in a preceding unit This is an evil one. It
happens when some previously included header file contains such definitions
that cause conflicts in another file later on. If the problematic symbol is a
macro, a well placed #undef should solve it, otherwise renaming [10] may be
necessary. In my case the min and max macros (of windef.h) conflicted with
numeric_limits::min and numeric_limits::max respectively.

In some cases the conflict is not, or not easily resolvable. We always have
the option to put these conflicting sources into separate _all.cpp files. In
the Xerces library some sources include windows.h, which in turn includes
winsock.h. Another source later includes winsock2.h which conflicts with
the definitions coming from winsock.h. Though this concrete conflict could
have been resolved in numerous other ways, I chose to let this case be a
demonstrative example. I put the sources including winsock2.h into a sep-
arate _all.cpp file, NetAccessor_all.cpp.



348 J. Mihalicza

using namespace vs. local symbol The usage of using namespace can easily
lead to name clashes in our method. The solution is preferably removing the
using directive or alternatively renaming the conflicting local symbol.

The following table shows what amount of change was needed to make the trans-
formated libraries compile:

Library Files Modified
files

Characters
added

Average bytes per
modified file

OpenSceneGraph 1661 31 2418 78
wxWidgets 825 82 12100 148
Xerces 811 50 5082 102

As the numbers show, 2-10% of the source files has to be adapted to the new com-
pilation method. These changes are safe and simple, in most cases only renames.

4. Results

Now let us see the effects of the transformation in numbers. The following ta-
bles will show the change both in the compilation time and in the summed up
preprocessed source size in LOC metric, for all the three libraries:

Target original
time

transformed
time ratio original

LOC
transformed

LOC ratio

osg plugin 626 18 2.9% 5388153 75279 1.4%
Osg 669 41 6.1% 5344590 150242 2.8%

osgUtil 229 53 23.1% 1814422 83677 4.6%
osgDB 143 19 13.3% 1373930 93451 6.8%
osgGA 95 11 11.6% 877402 66304 7.6%

osgViewer 114 24 21.1% 872151 124964 14.3%
osgText 58 15 25.9% 461226 68671 14.9%

OpenThreads 7 2 28.6% 166959 72085 43.2%
osgviewer app 13 13 100.0% 67380 67380 100.0%

all 1954 196 10.0% 16366213 802053 4.9%

Table 1: OpenSceneGraph

We can see that though the source size compression was maximal at wxWidgets,
it is not reflected in the time ratio. The reason is the heavy usage of precompiled
headers. Similarly, though Xerces has twice as big size ratio, still the time ratio is
almost the same as of OpenSceneGraph.

Table ?? shows the overhead of preprocessing before and after the transforma-
tion. It seems in Xerces either there is less coupling between the modules, or the
#include dependencies were consciously kept minimal.



How #includes Affect Build Time in Large Systems 349

Target original
time

transformed
time ratio original

LOC
transformed

LOC ratio

core 58 24 41.4% 19394804 192829 1.0%
base 24 11 45.8% 6534236 129696 2.0%
xrc 26 11 42.3% 4868302 99163 2.0%
adv 16 9 56.3% 2171443 109069 5.0%
html 18 9 50.0% 2111128 100901 4.8%
wxtiff 20 2 10.0% 1937586 69857 3.6%
net 9 4 44.4% 895406 80094 8.9%

richtext 16 9 56.3% 824870 109411 13.3%
aui 11 7 63.6% 532399 97514 18.3%

media 9 5 55.6% 450098 95189 21.1%
xml 5 4 80.0% 148692 75148 50.5%
qa 7 5 71.4% 147088 85731 58.3%

odbc 4 2 50.0% 147088 73544 50.0%
gl 10 5 50.0% 85731 85731 100.0%

dbgrid 6 4 66.7% 85731 85731 100.0%
wxjpeg 7 2 28.6% 76217 12665 16.6%
wxexpat 1 1 100.0% 69164 31842 46.0%
wxpng 4 1 25.0% 45500 14843 32.6%
wxregex 1 0 0.0% 13345 7693 57.6%
wxzlib 1 0 0.0% 11213 5810 51.8%
all 253 115 45.5% 40550041 1562461 3.9%

Table 2: wxWidgets

Target original
time

transformed
time ratio original

LOC
transformed

LOC ratio

XercesLib 204 22 10.8% 2287482 181125 7.9%
NetAccessor 10.8% 111402 55685 50.0%

all 204 22 10.8% 2398884 236810 9.9%

Table 3: Xerces

Library original LOCpreprocessed LOC ratio ratio
OpenSceneGraph 91205 16366213 17944.43%

OpenSceneGraph transformed 802053 879.40%4.90%
wxWidgets 357642 40550041 11338.17%

wxWidgets transformed 1562461 436.88%3.85%
Xerces 122396 2398884 1959.94%

Xerces transformed 236810 193.48%9.87%

Table 4: Preprocessing overhead



350 J. Mihalicza

5. Conclusion and future works

The results showed that the presented method for reducing full compilation time
can lead to as much as even 10 times faster builds. The ratio of the preprocessed
and the original source size gets dropped down radically (to 4-10%), under 1000%
in all cases, 200% for Xerces, which means that the preprocessed source does not
reach the double of the original size. On the other hand, manual code modifications
may be necessary to make the transformed source work again, and some rules and
limitations are to be followed in order to keep the method working.

Future works may include the automation of an error free transformation, the
development of a coding style to help remaining compatible with the approach, or
further studies on eliminating the overhead of #includes.

References

[1] Stroustrup, B., The C++ Programming Language, Addison-Wesley (2000)

[2] Duvall, P., Matyas, S., Glover, A., Continuous integration: improving software
quality and reducing risk Addison-Wesley Professional (2007)

[3] Vandevoorde, D., Josuttis, N.M., C++ Templates: The Complete Guide
Addison-Wesley Professional (2002)

[4] Veldhuizen, T.L., C++ templates are turing complete. Technical Report (2003)

[5] Abrahams, D., Gurtovoy, A., C++ Template Metaprogramming: Concept,
Tools, and Techniques from Boost and Beyond Addison-Wesley Professional (2004)

[6] Porkolab, Z., Mihalicza, J., Patakai, N., Sipos, A. Analysis of profiling
techniques for C++ template metaprograms Annales Universitatis Scientiarum Bu-
dapestinensis de Rolando Eötvös Nominatae, Sectio Computatorica, 30:97-116 (2009)

[7] Mihalicza, J., Compile C++ systems in quarter time Proceedings of 10th Interna-
tional Scientific Conference on Informatics (2009)

[8] Alexandrescu, A., Modern C++ design: generic programming and design patterns
applied Addison-Wesley (2001)

[9] Gamma, E., Helm, R., Johnson, R., Vlissides, J. Design patterns: elements of
reusable object-oriented software Addison-Wesley Professional (1995)

[10] Fowler, M. Refactoring: Improving the Design of Existing Code Addison-Wesley
(1999)

József Mihalicza
Pázmány Péter sétány 1/C H-1117 Budapest, Hungary
e-mail: jmihalicza@gmail.com


