
Proceedings of the 8th International Conference on Applied Informatics
Eger, Hungary, January 27–30, 2010. Vol. 2. pp. 313–321.

ODF Mobile Edition – Towards the
Development of a Mobile Office Software*

Imre Barnaa, Péter Bauera, Kinga Bernáda, Zsolt Hernáthb,
Zoltán Horvátha, Balázs Kőszegia, Gergely Kovácsa,

Tamás Kozsika, Zsolt Lengyelc, Róbert Rotha,
Sándor Sikec, Gábor Takácsa

aDept. of Programming Languages and Compilers
e-mail:(bib|bauer_p|bekraai|hz|pma|sanyisd|kto|rorraai|baller)@inf.elte.hu

bDept. of Information Systems
e-mail:hernath@inf.elte.hu

cDept. of Software Technology and Methodology
Faculty of Informatics, Eötvös Loránd University

e-mail:(lengyel|sike)@inf.elte.hu

Abstract
Open Document Format (ODF) [1, 2] is an increasingly popular office

document format which is accepted by most of modern office suites and is
the native format of OpenOffice.org. The aim of our project is to create a
software suite of specialized mobile ODF schemata and editors to provide
support for editing ODF-based documents on mobile devices, such as mobile
phones, smartphones and PDA’s. Currently editing of concurrent document
formats is supported on smartphones and PDA’s only. We created prototype
software to test editing capabilities of a wide range of mobile devices, tested
them with a variety of schema versions of different complexities and measured
the resource need of different editor operations through a scripting interface.
This paper presents our prototype tools, test methodology and results.

Keywords: Mobile office, Mobile software, ODF, XML

MSC: 68U15 Text processing, 68U35 Information systems

1. Introduction

The spread of Open Document Format as a desktop document format implies that –
similarly to concurrent formats, like those Microsoft Office have – ODF supporting

*Supported by NKTH under TECH_08-A2/2-2008-0089.

313

314 I. Barna, P. Bauer, K. Bernád, Zs. Hernáth, Z. Horváth, B. Kőszegi, . . .

editor suite running on mobile devices is needed. The goal of our research project
is to develop a data model, a schema driven editor model implemented on mobile
devices and a supporting desktop tool set. Considering the hardware and software
resources available on mobile platforms, we design editor software which can provide
the widest variety of ODF features while ensuring user-friendly edition of standard
conforming documents. As target devices range from cell phones to smartphones
to PDA’s and have different limits of different resource aspects, the software suite’s
resource needs should be adaptive to the current platform.

To reach our goal, we investigate the resources available to editor software, and
the resource need of primitive editor operations. Based on the analysis we select
ODF features that can be implemented in a user-friendly and resource-efficient way
on low-resource devices. We will show that a data model different from, but based
on ODF, is necessary to implement such an editor, thus we develop a desktop tool
set supporting the transformation of documents, and ensuring ODF conformity of
documents edited on the mobile device. As ODF standard is developing in time,
it is important that edited documents always conform to the standard.

First we surveyed the capabilities of mobile devices and developed a method to
define the document schemata used on mobile devices. We created test software
measuring the resource need of primitive editor operations and collected data of
execution time, memory usage and energy profile against complexity and size of the
document and its schema as well as different editor versions supporting different
set of features. We introduce our test software suite in section 2.

To address document complexity we defined a list of reduced ODF schemata
based on typical users and use cases of office document editors. Another aspect is
the size of the editor determined by the set of available operations and document
complexity through the document schema. For schema and document transfor-
mation and distribution in the test period, we created a set of supporting tools.
Transformed schemata and document set used in our tests are described in sec-
tion 3.

While testing editor functionality in detail we also investigated whether ODF
document layers (content, style, metadata and editor options) can be handled more
efficiently when weaved into a single XML document [6] or divided into separate
ones. We developed a layered document model in which structural, content and
style information as well as their changes are stored in 6 separate layers. To sup-
port mobile devices with such heterogeneous resource limits, we tested a variety of
schemata of different complexity and decided to have an adaptive set of schemata
instead of using a common schema on all platforms. The decision enables us to
follow the evolution of hardware and software architecture. Test results and con-
clusions are described in section 4.

In section 5 we give an overview of other office software running on mobile
devices. We plan our future work in section 6.

ODF Mobile Edition – Towards the Development of a Mobile Office Software 315

2. Software Tools

2.1. Test Editors

To support the possibly widest range of platforms, CLDC 1.1 and MIDP 2.0 fea-
tured J2ME environment has been chosen as base requirement. This software
platform is already provided by most mobile devices available today. Choosing the
right environment, we took a great care of not excluding commonly used mobile
devices still not accepting an unreasonably narrow feature set either (e.g. MIDP
1.0), because the latter would occasionally have led to the exclusion of required
J2ME library functionality (e.g. XML file processing library functionality – base
for ODF document handling).

We have designed and implemented a text editor prototype that beside prim-
itive text editing functionality (like displaying paragraphs, inserting, deleting and
marking of parts of texts) also supports elementary operations for styles (like cre-
ation of styles, applying styles, selection of font faces and font styles, colors both
for characters and background). A spreadsheet prototype has also been imple-
mented, which supports displaying and editing tables in appropriate formats, just
as displaying spreadsheets, data type conform displaying and editing cells of tables.

We included a typeless XML parser in our editor prototype which is able to
build a DOM-like tree of the document loaded to be able to test a variety of differ-
ent mobile site ODF schema derivatives. Low-resource logging has been added to
test editors that logs the starting and finishing time of certain operations. Times-
tamps are saved at the end of each run to avoid latency caused by I/O operations.
We also log the memory usage throughout the tests. This allows us to create op-
eration performance and memory benchmarks. In addition, timestamps also helps
connecting the data collected with profiler tools (like Nokia Energy Profiler) with
editor operations. We could collect CPU load, energy benchmarks and wireless
transmission data this way on mobile phones running Symbian OS.

The editor contains a lightweight script language. The language consists of
basic selector statements like setcursor and select, style-modifier statements
like createfontstyleor createrandomfontstyle, and document modifying state-
ments, like applystyle, inserttext or deleteselection. During script run, each
document-modifier statements are applied on the current selection of the text. The
syntax of the language is based on CSV, where the first field of each row is a state-
ment followed by its parameters. The language supports for-loop with an integer
loop-variable. Loops can be nested, and the loop-variable can be referenced inside
the loop body by squared parentheses.

2.2. Desktop Tool set

Various tools has been created to ease the creation of schema derivatives and con-
forming documents that can be transferred to mobile devices. We developed a
RELAX NG [3, 4, 5] schema editor with a GUI which can search for certain XML
elements, RELAX NG patterns and save semantically valid schema derivatives after

316 I. Barna, P. Bauer, K. Bernád, Zs. Hernáth, Z. Horváth, B. Kőszegi, . . .

removing selected elements. It also has a command-line interface to batch process
a list of patterns to remove from the given schema. With this tool we created a
list of schema derivatives to test the editor with. The tool also outputs a list of
XPath expressions describing those sub-trees of the ODF documents which have
to be removed for the document being conform with the new, reduced schema.

We also created a document transforming tool to reduce test documents. It
processes the list of XPath expressions, reduces the documents, while also removes
namespace declarations that cannot be validated on the mobile site. After the
transformation we get a more compact document, which can be edited using signif-
icantly less resources. After editing the document we want to restore the removed
contents, thus every unnecessary sub-tree in the document is replaced by a typed
marker. Marker types enables the mobile -site editor to display icons in place of
removed fragments (like big pictures, complex tables, etc.). Knowing the type of
the removed fragments is also a key if we want to perform editor operations around
markers as we can guarantee document validity this way. As markers have unique
ID’s we can put the replaced fragments back into the edited document while up-
loading to the desktop machine with another tool. After the transformation the
document is conform to ODF schemata.

Test software communicating over 3G network and Wi-Fi has been created,
to model document and metadata transmission between the mobile and desktop
site. We compared the time needed to process zipped and plain-text XML files
containing spreadsheets. Our tests have shown that the overhead of compressing
and decompressing files is very low, and the smaller file size does not only speed up
the transmission but also decreases load times from the flash memory installed in
mobile devices. As loading data proved to be a bottleneck in the tests, we decided
to use zipped files in all of our later tests.

3. Test Schemata and Document Set

Starting from the ODF Standard, we investigated the features offered and con-
trolled by the ODF schemata, such as tracking changes, or accessing data sources.
We have defined different concept categories of the standard, and several user
classes the different categories are assigned to. By gathering XML tags describing
different categories, different reduced schemata, each tailored to the corresponding
user class, could be achieved. These simplified schema derivatives constituted the
base of test environments of our benchmarks. According to our approach of layered
structure, to measure the resource need of all user group established, all simplified
schema derivatives have been generated with and without embedded style informa-
tion. User classes and corresponding concept categories are shown in table 1.

Concepts and their ordering are subjective. They have empirically been created
to simplify our benchmarks. The simplest schema we start to test with contained
neither of the above concepts. From step to step we augmented them by XML
tags supporting layout, enumeration, etc., and examined the text editor controlled
by the step by step flaring schema. Documents of different complexity have been

ODF Mobile Edition – Towards the Development of a Mobile Office Software 317

created in several sizes. Document generator has been implemented to create doc-
uments of different size by multiplying the content of shorter documents. The
generator guarantees unique ID’s of affected document elements.

Layout Editors Paragraphs
Breakpoints

Enumerators Enumerations
Spreadsheet Users Spreadsheets
Multimedia Users Shapes

Pictures, Motion Pictures
Objects, Formulas

Note Makers Notes, Footnotes
Headings, Foots

Publishers Bookmarks
References
Bibliography

Team Users Change Tracking
Automating Users Macros
On-line Users Data Sources
Dynamic Document Users without any restriction

Table 1: Concept categories

4. Test Results and Conclusions

To develop test software we investigated a variety of mobile device emulator soft-
ware. We found that the emulator included in Sun NetBeans provides the most
functionality and its interface is very close to real life devices. Unfortunately due to
the loose security settings it has, programs tested with the emulator were not guar-
anteed to run on mobile phones. Because of the processor architecture of desktop
computers is different from that most of the mobile phones have, the performance
tests ran in emulator environment gave results significantly different from mobile
phones. The most decisive differences found and to be handled are as documented
next.

4.1. Significant Settings and Operations on Mobile Devices

4.1.1. Security Settings

Examined mobile devices showed different behavior concerning security settings.
Executing particular I/O operations, a number of devices pop up messages about
security concerns users have to confirm in order to gain access permission to re-
sources an operation in question addressed by. Others allowed us to give permis-

318 I. Barna, P. Bauer, K. Bernád, Zs. Hernáth, Z. Horváth, B. Kőszegi, . . .

sions on the first run, or each time before starting the editor. but others gave
pop-up messages before every disk access. Mobile benchmark tests modified to
ensure user reaction is not measured.

4.1.2. Power Saving Mode

A commonly known behavior of mobile devices is a kind of power saving mode
functioning: if users do not touch the screen or do not press a button for some
minutes, the back-light reduces or the screen turns off. Our measurements showed
that on some devices when the screen is turned off, processor clock rate is also
reduced, which caused that running some scripts that could be completed in 10
seconds otherwise took thousands of seconds.

4.1.3. Energy Optimization

Energy optimizations takes place even when devices run in user-interactive mode.
This caused that some devices executed simpler operations slower than more com-
plex ones, as the latter caused higher processor-utilization which triggered a higher
clock rate. As clock rate is adjusted with a threshold, executing a loop of simple
and then a loop of complex operations took more time than executing the loops in
the opposite order.

4.1.4. Spreadsheet Settings

Spreadsheets coming from different sources built by different ODF implementation
in different desktop ODF software caused divergent results. OpenOffice.org does
not store empty cells in spreadsheets individually, but uses ranges instead. Most
other office suite stores every empty cell that resides between non-empty ones.
Differently stored empty cells do not cause differences in file sizes since ODF consists
of zipped XML files, but rather significant parse time after decompression.

4.1.5. Text Insertion

Our measurements showed that insert operations that needs re-fragmentation are
very costly considering processor time. The cost is directly proportional to docu-
ment size, but re-fragmentation can be limited by screen and paragraph size. Re-
fragmentation of documents are structural operations. As a consequence of that
it is reasonable to distinguish structural and textual changes. Structural and tex-
tual changes are to be separated and treated as operations on document structure
and document content. To make structural operations efficient, not only the style
information including automatic styles are to be detached from the content layer,
but rather a separated structural layer also has to be established. The associated
content can be edited through a sliding window, and therefore re-fragmentation
has to be computed and performed for only the sliding window.

ODF Mobile Edition – Towards the Development of a Mobile Office Software 319

4.1.6. Parsing Documents

Benchmark results showed that processor time needed to parse documents increases
proportionally to both document size and complexity. Since editing documents of
less reduced or full complexity exceed an acceptable time on some mobile devices.
With an eye on the above, an adaptive assignment of schemata of different com-
plexity to mobile devices equipped with different resources is reasonable. We have
defined different versions (cf. user classes) adaptively to mobile device resources.
The formal descriptions of those are RELAX NG schemata and sets of XPath ex-
pressions. Adaptively reduced ODF schemata are defined by the corresponding
software.

4.1.7. Document Size

Some mobile devices cannot open longer documents (50-100 pages), while others
can not perform operations on them. Medium-sized documents (10-15 pages) on
particular mobile devices have reached a J2ME run-time memory limit of 2 MB
leading to an exception, or garbage collection caused an enormous performance
loss. According to our measurements a high category device like Nokia E71 can
even handle fulfilled spreadsheets of 400 times 400 cells, whilst an ordinary mobile
phone like Sony Ericsson w890i is able to handle only 100 times 100 cells.

4.2. Layered and Segmented Documents

Test runs showed that performing textual and style modifications separately needs
less resources than performing them simultaneously. It has also been discovered
that structural information should be distinguished. Therefore we propose a layered
model of 6 XML documents: 1. Structural information, 2. Style information, 3.
Textual information with references to positions in document structure and with
references to styles applied on text portions, 4. Changes in document structure, 5.
Changes in styles and 6. Textual changes including changes to references. When
we start to edit a document the first three layers need to be downloaded from the
desktop. After editing the document, the latter three need to be uploaded. As we
upload the change-lists of the three layers, conflict resolution can be implemented
if distributed editing is in need.

As processing the structure of a whole document is resource-intensive and the
sliding window used for editing the document is much smaller than that of a desk-
top editor, it is reasonable to segment documents and process only few segments on
a mobile device at a time. This way the whole document do not need to reside in
the memory while editing, but we can download selected segments from the desk-
top on demand. This solution creates an opportunity to edit the same document
concurrently on multiple devices as locks or conflict resolution has to be applied
only for a limited number of edited segments.

320 I. Barna, P. Bauer, K. Bernád, Zs. Hernáth, Z. Horváth, B. Kőszegi, . . .

5. Related Work

Before starting our development we investigated mobile office suites supporting
ODF. mOOo project started by Java.net group (https://mooo.dev.java.net/) aimed at
handling ODF text documents and spreadsheets on mobile devices, however they have not
started their development yet. In the last two years they released a remote control applica-
tion for desktop presentations, called Impress Controller. Sept Solutions developed Mobile
Office running only on Symbian OS (http://www.sept-solutions.de/English/office.php). It
can display ODF documents but cannot edit them. RedOffice suite offers edit features
(http://www.redoffice.com/?class=sy), but is running only on MID and UMPC devices,
not on handheld devices. Visor ODF Movil is a Spanish J2ME based software running
on smartphones and PDA’s (http://visorodfmovil.morfeo-project.org/). It can display
ODF documents, but cannot edit them. Other office suites like QuickOffice, supports
only Microsoft Office formats, not ODF (http://www.quickoffice.com/). We concluded
that an office suite running on a wide range of mobile devices and capable of editing ODF
documents is not present on the market yet.

6. Future Work

Working with structural elements, hierarchical limits can be defined. If the mobile device
has lower capacity, the recursion depth of recursively embedded elements (like enumer-
ations or tables) can be limited. This type of reduction leads to a document which is a
sub-document of the original, while the schema allowing only a limited depth of recursion
is not strictly a sub-schema of the original as it includes new non-terminal patterns. We
are working on a schema transformation descriptive language to be able to express these
kinds of reductions.

Our measurements have revealed two problems. The loading time of the document
and the memory needed for document representation can be critical. Both can be reduced
by an editor which is built on a memory- efficient representation of the schema, which can
be processed efficiently. We are working on such a data model to build a schema driven
editor software. We are also developing a resource model to support resource-adaptivity
of the editor [7].

References

[1] OASIS Open Document Format for Office Applications (OpenDocument) TC – Open
Document Format Specification, 2006-2010,
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=office

[2] ISO/IEC 26300:2006 Information technology – Open Document Format for Office
Applications (OpenDocument) v1.0, 2006,
http://www.iso.org/iso/iso_catalogue/catalogue_tc/
catalogue_detail.htm?csnumber=43485

[3] OASIS RELAX NG Committee Specification, 3 December 2001,
http://www.relaxng.org/spec-20011203.html

ODF Mobile Edition – Towards the Development of a Mobile Office Software 321

[4] ISO/IEC 19757-2:2003 Information technology – Document Schema Definition Lan-
guage (DSDL) – Part 2: Regular-grammar-based validation – RELAX NG,
http://www.iso.org/iso/catalogue_detail.htm?csnumber=37605

[5] ISO/IEC 19757-2:2008 Information technology – Document Schema Definition Lan-
guage (DSDL) – Part 2: Regular-grammar-based validation – RELAX NG,
http://www.iso.org/iso/catalogue_detail.htm?csnumber=52348

[6] Extensible Markup Language (XML) 1.0 (Fifth Edition), W3C Recommendation, 26
November 2008,
http://www.w3.org/TR/xml/

[7] Mancinelli, F., Inverardi, P.: A Resource Model for Adaptable Applications. In: Pro-
ceedings of the 2006 international workshop on Self-adaptation and self-managing
systems, Section: Models, Pages 9–15. ACM Press, New York (2006)

Faculty of Informatics, Eötvös Loránd University
Pázmány Péter sétány 1/C H-1117 Budapest, Hungary

