Proceedings of the 8" International Conference on Applied Informatics
Eger, Hungary, January 27-30, 2010. Vol. 2. pp. 305-312.

Modeling Business Processes in Web
Applications

Attila Adamké, Lajos Kollar

Department of Information Technology, University of Debrecen
e-mail: adamkoa, kollarl@inf.unideb.hu

Abstract

Business process modeling in Web applications is an emerging field. The
early methods of Web Engineering only dealt with the structural, naviga-
tional and presentational part of an application but business processes were
completely missing. The demand for these processes resulted in several mod-
eling techniques. One of them uses stereotyped class diagrams while others
apply state machines for defining the transitions between the steps.

In this paper the pros and cons of each approach will be discussed, high-
lighting the differences and how can these methods work together in order to
capture different aspects of business processes and how can they help us for
effective and complex software development processes.

These processes and workflows could be expressed in a set of simple UML
diagrams like activity and state machine diagrams. We will discuss the ben-
efits and disadvantages of this model-driven software development approach.

Keywords: Web Application, Business Process, BPM, UML, Spring Web Flow

Categories and Subject Descriptors: D.2.10 [Software Engineering]: Design;
D.2.11 [Software Engineering]: Software Architectures; H.4.3 [Information
Systems Applications|] Communications Applications

1. Introduction

eling while others are not.

Business Process Modeling (BPM) is a modern term and methodology which has
evolved through different stages and names. Confusingly, the acronym BPM can
mean different things, some of them are closely related to Business Process Mod-
'Business Process Management’ is an example of a
different and related meaning. Business Process Modeling is a method for improv-

ing organisational efficiency and quality.
The increasing transparency and accountability of all organisations, including

public service and government, together with the modern complexity, penetration

305

306 A. Adamko, L. Kolldr

and importance of ICT (information and communications technology), for even
very small organisations nowadays, has tended to increased demand for process
improvement everywhere. This means that Business Process Modelling is arguably
more widely relevant than the earlier efficiency methodologies (e.g., Time and Mo-
tion Study or Total Quality Management were.

In common sense, Business Process Modeling aims to improve business per-
formance by optimising the efficiency of connecting activities in the provision of
a product or service. Business Process Modelling techniques are concerned with
'mapping’ and 'workflow’ to enable understanding, analysis and positive change.
Diagrams — essentially 'flow diagrams’ — are central features of these methodologies.

The term Business Process Model (also abbreviated to BPM) is the noun form
of Business Process Modelling, and refers to a structural representation, description
or diagram, which defines a specified flow of activities in a particular business or
organisational unit.

A Business Process Model (BPM) is commonly a diagram representing a se-
quence of activities. It typically shows events, actions and links or connection
points, in the sequence from end to end. Sequence is significant and essential to
most aspects of business process modelling.

Over the years, the scope of business processes and BPM has broadened. Less
than a decade ago, BPM, known then as “workflow”, was a groupware technol-
ogy that helped to manage and drive largely human-based, paper-driven processes
within a corporate department. BPM today is an enterprise integration technol-
ogy complementing Service-Oriented Architecture (SOA), Enterprise Application
Integration (EAI), and Enterprise Service Bus (ESB).

However, in our point of view, in the field of Web applications the BPM is a
supporting tool to describe the business logic inside the application. In order to
express these rules we can apply several standards as it can be seen in Table 1.

Standard Organization Type
Business Process OASIS Execution Language
Execution Language
(BPEL)
Business Process Business Process Notation language
Modeling Notation Management Initiative
(BPMN) (BPMI)
Business Process BPMI Execution language
Modeling Language
(BPML)
UML Activity OoOMG Notation language
Diagrams
XML Process Definition WEMC Execution language
Language (XPDL)

Modeling Business Processes in Web Applications 307

Business Process OoOMG Execution language
Definition Metamodel and/or notation
(BPDM) language, as MDA
metamodel
Business Process OMG Administration and
Runtime Interface monitoring, human
(BPRI) interaction, system
interaction, as MDA
metamodel
Web Services World Wide Web Choreography
Choreography Interface Consortium (W3C)
(WSCI)
XLANG Microsoft Execution language
Web Services Flow IBM Execution language
Language (WSFL)
Business Process OASIS Choreography (and
Schema Specification collaboration)
(BPSS)

Table 2: Common BPM Standards

At the heart of the architecture is a runtime engine that executes processes whose
source code is written in a given language. What distinguishes between architec-
tures is the choice of standards. In our case, to model business processes in Web
applications there are several factors to take into account, like frameworks and
methodologies, that can influence the development and design steps in these kinds
of applications.

Based on a case study in [6], Table 2 shows that the most flexible methodology
which supports business modelling for Web applications is the UML-based Web
Engineering (UWE).

Aspect Attribute |OOHDM WebML UWE 00WS Preferred
User Interac- | Coceptual Business Activity Dia-|Business
tion Diagram |Class Process gram Process
Schema Diagram Model
Abstraction Abstraction |Unique Unique Flexible Flexible Flexible Flexible
Context Intern - TRUE TRUE TRUE TRUE TRUE
Interaction |TRUE TRUE TRUE TRUE
Contextual TRUE
Argumentation [Argument |- TRUE - TRUE TRUE TRUE

Table 3: Comparison of several methodologies

The activity diagram provides good possibilities to model the flow of information
inside Web applications. However, it does not contain or to be more precise, does
not provide a way to define all different elements on the Web pages. But this is
the closest method in the list which can fulfil our requirements.

308 A. Adamko, L. Kolldr

On the other hand, we can think about a widely used framework’s controller
module to handle these requirements also. The Spring framework in version 2.5
has introduced a new controller module which uses a state machine diagram to
capture business logic and processes in Web applications. In the following sections
we would like to introduce these possibilities.

2. Modelling Business Processes

2.1. ArgoUWE

ArgoUWE is a CASE tool that supports the systematic design of Web applications
using the UML-based Web Engineering (UWE) approach. The design methodology
of UWE is based on a metamodel which is defined as a lightweight extension of the
UML metamodel in the form of a profile and comprises the separate modeling of
the different aspects of a Web application: content, structure, layout, and business
logic.

As one can found in [1], the Process Model construction in the UWE design
process includes a step where each process node is refined in a process model, con-
sisting of a process structure model and a process flow model. A process structure
model is represented by a UML class diagram and describes the relationship of a
process node and other process classes whose instances are used to support this
business process. The logic of the business process is described by a process flow
model visualized as a UML activity diagram. ArgoUWE generates a process node
in the navigation model for each (non-navigational) use case that is manually se-
lected by the modeler. Thereby, a process class is generated for the process node of
the selected use case and is automatically included in the process structure model.
Auxiliary process classes can be added manually. These models can be seen in
Figure 1 and Figure 2.

These diagrams are helpful to see the connections and relations between classes
and business rules but it can be useful only if we choose to use the UWE method-
ology. Moreover, it has not got any code generations facilities to automatically
generate a skeleton for the Web application.

01

Checkout 3> PaymentOptions 3
creditC ardNumber : int
creditt ardExpire : int
paymentType : PaymentType|

0.1 chedcCreditCard’) : Boslean
ShoppingCart 2> 0.1 Customer 3>
placeOrder() ; void s etP aymentCQptions() : void|
<<enumeration>>
0.1 PaymentType
Order 3 moneyDrder : String
0.1 creditt ard : String
ice() : voi

Figure 1: Process structure model

Modeling Business Processes in Web Applications 309

ShoppingCard 22 Confirmitems

>

piorap)

& effr ap Options !

P—

T
5

urapp ed)

[more chdnges]

[ele ctP ahomee it O ptions]

setf aymentOptiors

[defautPgymentO ptions]
Cusomer)

/

[no Ehanges]
placaOrder "
Ghopaingca O

Figure 2: Process Flow model

2.2. Spring Web Flow

Another interesting direction can be found in the Spring framework. The basic idea
behind Web Flow’s method is the nature of the Web applications. More specially,
how the users are navigating inside the application. Each task that a user can
perform is expressed as a sequence of distinct steps, as a workflow. Moreover, to
make a step there could be defined several conditions that must be met before the
user can go to the next step — or as we will see, to the next page. In order to
express these conditions UML’s State Machine diagrams are applied because this
diagram can be used to express all the necessary requirements need to be fulfilled.

In Spring Web Flow, a flow consists of a series of steps called “states”. A flow
encapsulates a reusable sequence of steps (states) that can execute in different
contexts. A flow may call another flow as a subflow. The flow will wait until
the subflow returns, then it responds to the outcome of the subflow. Flows are
authored by Web application developers using a simple XML-based flow definition
language.

Entering a state typically results in a view being displayed to the user. On that
view, user events occur that are handled by the state. These events can trigger
transitions to other states which result in view navigations. This can be seen in
Figure 3 which is a typical booking sequence.

310 A. Adamko, L. Kolldr

Beok Hotel

enltry point: > BookingDetalls
SearchAesuits
| S

BookingConfirmation

exit point:
HotelSearcn

| S
Figure 3: An example to show a flow (for booking a hotel)

Most flows need to express more than just view navigation logic. Typically they
also need to invoke business services of the application or other actions. There are
several points where actions can be executed, like flow start, state entry and exit,
on view render and so on. Actions are defined using a concise expression language.
Spring Web Flow uses the Unified EL by default. The example in Figure 4 shows
the same flow as Figure 3 but expressed in the flow definition language.

<flow xmlns="http://www.springframework.org/schema/webflow"
xmlns:xsi="http://wuw.w3.org/2001/XMLSchema-instance"
xsi:schemalocation="http://www.springframework.org/schema/webflow
http://www.springframework.org/schema/webflow/spring-
webflow-2.0.xsd">
<input name="hotelIld" />

<on-start>

<evaluate expression="bookingService.createBooking(hotelld,

currentUser.name)"
result="flowScope.booking" />

</on-start>
<view-state id="enterBookingDetails">

<transition on="submit" to="reviewBooking" />
</view-state>

<view-state id="reviewBooking">
<transition on="confirm" to="bookingConfirmed" />
<transition on="revise" to="enterBookingDetails" />
<transition on="cancel" to="bookingCancelled" />
</view-state>

<end-state id="bookingConfirmed" />
<end-state id="bookingCancelled" />
</flow>

Figure 4: A sample flow

Modeling Business Processes in Web Applications 311

The reason why we have chosen Web Flow as a good candidate to model busi-
ness processes inside these applications is the possibility to model stateful Web
applications resulting a process driven approach. One can define all navigation
in a central location and can treat the entire interaction as one algorithm. It is
possible to define the flow programmatically.

Web Flow uses a Domain Specific Language (DSL) analogous to a flowchart to
model processes, as it can be seen in Figure 4. These processes (flows) are reusable
across different areas of the application. Similarly to method invocations, flows
can be called by other flows, can accept input parameters and can return output
values.

These possibilities make the Sping framework’s Web Flow controller module as
a recommended solution for capturing the business processes for Web applications.

3. Conclusion

One of the greatest advantages of the Model Driven Architecture is that we can
build complex systems with a clear, structured project environment. The project
participants (analysts, designers, developers) work on separated areas. The design
plans in an MDA environment are UML documents. These documents change
along with the development process.

In this paper we have focused on the business logic and process modelling
possibilities inside Web applications. We have discussed the pros and cons of two
approaches highlighting the differences and how these methods can work together
in order to capture different aspects of business processes. We have also shown the
technologies we found effective for complex software development processes.

These processes and workflows can be expressed in a set of simple UML dia-
grams like activity and state machine diagrams. We showed that UWE uses class
diagrams and activity diagrams to capture business requirements while Web Flow
applies state machine diagrams for the same purpose. Both of these approaches
have advantages and disadvantages.

Activity diagrams can be exposed as typical business processes mapped to the
Web environment. Developers grown up on UML can find this approach very
useful and easy to understand. However, Web applications have a different working
mechanism but if we apply the principles of UWE we can create these models and
utilize its benefits.

On the other hand, Sping’s Web Flow concept uses state machine diagrams, or
more precisely, a DSL which is based on state machine diagrams. This approach
deals with states and each flow can be expressed as a sequence of Web pages. From
a practical viewpoint, it is easier to imagine a Web application this way.

Modifications can easily be introduced into the models in both cases. However,
it is more comfortable to update only one model rather than two. It can lower the
possibility of inconsistency inside the design plan. These approaches are usable for
agile projects with high change request expectations.

312 A. Adamkd, L. Kollar

This architecture is not recommended for small applications. The setup of the
configuration and the whole generation process would only mean an overhead in
the cost during the development. Finally, we found it important to underline that
this software development method is effective in medium- and greater sized projects
only.

Acknowledgement. This work is supported by TAMOP 4.2.1./B-09/1/KONV-
2010-0007/TIK/IT project. The project is implemented through the New Hungary
Development Plan co-financed by the European Social Fund, and the European
Regional Development Fund.

References

[1] Alexander Knapp, Nora Koch, Gefei Zhang, Hanns-Martin Hassler: Modeling Business
Processes in Web Applications with ArgoUWE. UML 2004: 69-83, 2004

[2] Schmidt, D.C., "Model-Driven Engineering." IEEE Computer 39 (2), 2006, pp. 25-31.
[3] Mendes, E., Mosley, N., "Web Engineering." Germany : Springer, 2006.

[4] Conallen, J., Building Web Applications with UML. 2nd Edition. Boston : Addision
Wesley, 2002.

[6] Jan Machacek et al., Pro Spring 2.5, Apress, 2008

[6] Jurriaan Souer et al., Model-Driven Web Engineering for the Automated Configuration
of Web Content Management Systems, 9th International Conference, ICWE 2009 San
Sebastian, Spain, June 24-26 2009 Proceedings, Springer, 2009

Attila Adamké, Lajos Kollar
Department of Information Technology
University of Debrecen

H-4010, P.O. Box 12, Debrecen
Hungary

