
Proceedings of the 8th International Conference on Applied Informatics
Eger, Hungary, January 27–30, 2010. Vol. 2. pp. 295–303.

Interoperability of Model-driven Web
Engineering approaches

Attila Adamkó, Lajos Kollár

Department of Information Technology
Faculty of Informatics, University of Debrecen

e-mail:{adamkoa|kollarl}@inf.unideb.hu

Abstract

Model-driven Web Engineering (MDWE) approaches provide methodolo-
gies and tools for both the design and the development of most kinds of
Web applications. They address different concerns of Web applications by
using separate models (e.g., structural, navigational, presentational) which
are transformed into Web page skeletons by model compilers. These meth-
ods are more or less applicable for data-driven Web applications but with the
growing complexity of Web systems (Web workflow systems, e-commerce, e-
government, etc.), they need to address new requirements, as well. To answer
these new challenges, new concerns are needed (for example, process models,
etc.). However, this requires a lightweight, extensible, loosely coupled set of
models for designing applications because not all kinds of Web applications
need every concern.

In this paper, an approach for the interoperability of (some) existing
methodologies based on metamodeling, model transformations and model
weaving will be introduced. This approach allows the MDWE methodologies
to be extended in a consistent manner where new model kinds are separated
and weaved together with the classical models that each approach supports.

Keywords: MDWE, Web Applications, Metamodeling, Model transforma-
tions, Model weaving

1. Introduction

Due to the evolution of Web technologies experienced in the past 10–15 years, the
Web has become a primary platform for developing applications. However, as these
technologies evolve very fast, they might become obsolete soon. Developers of Web
applications need sophisticated solutions that support the whole product lifetime of
an application that is able to cope with the skyrocketing changes of the underlying
technologies.

295



296 A. Adamkó, L. Kollár

Model-driven Web Engineering is a still emerging field aiming at providing
sound model-based solutions for building Web applications that try to separate the
abstract design (PIM) from the concrete technological platforms (PSMs).

2. Related research

2.1. Web Engineering methodologies

Existing model-based Web Engineering approaches provide different methods and
tools for both the design and the development of various kinds of Web applications.
In order to reduce complexity, most of the methodologies propose the separation
of different views (i.e., models) of the application into 3 levels: structural (or con-
tent), navigational (or hypertext) and presentational models. For more information
see [15]. Figure 1 shows the most common design dimensions of the currently ex-
isting methodologies.

Figure 1: Design dimensions of Web applications [15].

In addition, some methodologies add some new models (or refine existing ones)
to obtain a more fine-grained solution when modeling the application. Despite the
separation, the levels should be interconnected in order to be able to capture the
semantics behind the elements of the different models, e.g., the navigational objects
are based on certain elements of the content model.

Beyond the creation of the models for the corresponding levels, Web application
designers need to be aware of the various aspects of the systems to be modeled.
Some applications are providing access to more or less static information hence they
require much less behaviour modeling compared to systems that need to perform
several complex business processes like e-commerce applications. Both structure
and behaviour need to be modeled using a uniform notation that has to cope with
the specific characteristic of each of the levels.

There is another approach worth mentioning when talking about Web appli-
cation design. Unfortunately, there is no consensus in the literature about the
general phases of the development which means that the order of steps involved in
modeling the levels is up to the modeler. Moreover,

Many design methods can be found in the literature: OOHDM [14], OO-H [4],
UWE [7], W2000, WSDM and WebML [2] are among the most popular ones. From



Interoperability of Model-driven Web Engineering approaches 297

a modeler’s perspective, each of them offer some possibilities for modeling the
levels and aspects mentioned above, and they all come with a guideline for the
development process. On the other hand, today’s situation is somehow similar to
the well-known “object-oriented method war” of the 1990ies (see Figure 2). That
“method war” has ended with the unification of the different modelling notations
which resulted in the UML so the real question is that can this strategy also work
for the existing web engineering approaches or not. In Section 4 we elaborate our
viewpoint on this topic.

Figure 2: Evolution of Web modeling languages [15].

2.2. Domain-specific modeling, Metamodeling

The main goal of domain-specific modeling is to raise the level of abstraction by
specifying the solution directly using domain concepts. The final product (and
maybe several intermediate artifacts, as well) are generated based upon these high-
level specifications. It also allows the stakeholders and domain experts to con-
centrate to the domain only. Domain-specific languages (DSLs) are built in order
to capture domain semantics. A very common (but not the only) way of defining
DSLs is metamodeling. The previously mentioned Web application design methods
contain notations that can be used for describing a model of a Web application so
they can be considered as DSLs for Web applications hence.



298 A. Adamkó, L. Kollár

Some of the existing Web application design methods (e.g., UWE, WebML)
offer a metamodel, as well [8, 13]. This allows model-based development since one
need to build models conforming to the appropriate metamodel in order to capture
the structural, navigational or presentational structure of the application to be
developed. However, in the most of the cases, these models mix the different levels
of Web applications that results in a solution that might be appropriate for the
given application domain but makes the reuse of models or model parts almost
impossible.

2.3. Model transformation, Model weaving

Model transformations are the most important operations in model engineering,
describing how elements in the source model are converted into elements in the
target model. This is achieved by relating the corresponding metamodel elements
in the source and the target metamodels. Transformations can be classified into
two categories: vertical transformations (a.k.a. refinements) are defined between
models of different abstraction levels (e.g., PIM—PSM mappings), while horizontal
transformations are mappings between models of the same level of abstraction (e.g.,
for improving or correcting a model). Examples of model transformation languages
are QVT [12] , ATL [5] or MOLA [6] .

Weaving models are used to explicitly describe fine-grained relationships be-
tween models and metamodels (that are models themselves, as well) and execute
operations based on them. With the help of applying weaving models, large meta-
models that capture all aspects of a system can be avoided and a lattice of meta-
models can be constructed instead where each metamodel that focuses on its own
domain is maintained independently from the others. The links defined by the
weaving model have some associated semantics about the linked elements.

Since a weaving model is a model itself, it can be a subject of applying a model
transformation that results in a new model transformation. This should be applied
to the left woven model in order to produce an instance of the right woven model
that captures the semantics defined by the weaving link. For more information on
model weaving and the differences between weavings and transformations, see [3].

3. Problem statement

Most of the methods mentioned in Section 2.1 are using different notations for these
models, hence the interoperability between them is very hard to achieve. This also
deceases reuse as one cannot import, for example, a conceptual model or a part of
it when developing an application for a similar domain.

When adopting a model-based solution for application design, the main artifact
is a model. The design process of an application will result in a set of models that
is a starting point of a model-driven code generation process. This is a well-known
fact in Model-driven Engineering and therefore is common in the various existing
Model-Driven Web Engineering approaches, as well.



Interoperability of Model-driven Web Engineering approaches 299

The idea of complete integration of the existing languages and methodologies,
i.e., developing a common metamodel and unified phases of development that ev-
eryone will use in the future is utopian and (in our opinion) it must not be the goal
of any integration or interoperability efforts. Its reasons are twofold. First of all,
there are several proposals in the literature that address the creation of a common
metamodel but the different approaches presented in [9, 11, 16] are good examples
for demonstrating why it cannot be considered as “common”.

Secondly, different domains and various flavours of Web applications may re-
quire different styles of modeling and it is almost impossible to achieve such a
common modeling notation which is easy to understand and work with while being
flexible enough to solve the uprising issues. Therefore we should work on bridging
the different models together that allows (or promises, at least) the interchange-
ability of models and/or model pieces instead.

New models, processes and transformations should be included into the existing
design methods when new aspects arise. However, these changes to a methodology
are very risky and can cause several problems. In [10], three categories of concerns
were identified:

• dependent concern, that depend on some other (earlier defined) concern(s),
e.g., navigation (which depends on the conceptual model);

• replacement concern, that fully replaces a previously defined concern, e.g.,
presentation;

• orthogonal concern, that is a brand new concern which is completely inde-
pendent of all the others, e.g. business process models.

However, we are not against the creation of subsequent metamodels and/or
methodologies as they can result in better description of system parts or improved
development processes. We only claim that a common metamodel is not the Holy
Grail of MDWE as each and every “common” one will most probably fail as being
a universal solution because the diversity of Web applications will require new an-
swers for such questions that probably had not been asked by the time of developing
the common metamodel.

4. Proposed solution

Our goal is to establish an extensible model-based framework which can provide
interoperability among the existing Web modeling languages. This task has to
be achieved by separating the different concerns (i.e., levels, phases and aspects)
of Web applications in order to be able to either reuse relevant model parts or
“transfer” a model into another notation (e.g., after a structural model is created
conforming the metamodel of language A we decide to build the navigational model
in language B since it might be more appropriate for our goals).

Hence, it is extremely important that the metamodels defining the languages
for describing the various aspects of a Web application need to be separated from



300 A. Adamkó, L. Kollár

each other as much as possible. So we suggest of decomposing the various methods
into a combination of models, each of which conforms to a well-defined part of the
whole application domain regardless of the language used for the notation. For
example, that allows of describing the structural model either in relational model,
Entity Relationship (ER), UML or by using any custom DSL but it requires the
separation of the structural model from any other models (e.g., navigational or
requirements model). Besides, we suppose that no method uses a notation that
does not conform to the MOF metapyramid (in fact, this is not a heavy constraint).

In our proposed solution, model weaving should appear on two levels:

1. On intra-method level, the relationships existed before the decomposition of
the concerns need to be defined in a weaving model in order to be able to
produce the same level of expressiveness. Let us consider the well-known con-
ference management system as an example! In UWE, for instance, we would
have a UML class called Paper in the structural model while its derived
(and stereotyped) versions would appear in the navigational and presenta-
tional model, as well. Instead of the given method’s built-in notation for
this derivation, weaving links should be established in a weaving model that
comprises statements about the relationship between the models in question.
This weaving model can also be used later on when the starting point of the
design is the building of the structural model as it captures the semantics
that structural model elements also become (stereotyped) elements of the
navigational model under given circumstances so a transformation might be
applied to the structural model in order to create an initial version of the
navigational one.

2. On inter-method level, when the relationships described by the weaving model
define which model elements of a given model Ma conforms to which model
elements in Mb. Ma and Mb here typically have the same level of abstraction
(e.g., they both are structural models described by different methodologies)
and the weaving model is defined between their corresponding MMa and MMb

metamodels. For example, if one of the methods uses ER for describing the
structural model while the other one applies UML for the same purpose,
then the weaving model should contain that the strong entity type of the ER
corresponds to a class in a UML class diagram, etc. This approach allows
not only the generation of such a model transformation based on the weaving
model that can transform a model in a notation into another model of another
notation but model traceability is also supported.

The work is currently in progress: we are working on creating the weaving
links and transformations starting from PIMs defined with some of the well-known
MDWE methodologies and resulting in a generated Spring Web Flow-based imple-
mentation with the help of the AMMA platform. This work is a continuation of our
previous work on creating model-based Web applications that is discussed in [1]. In
the future we plan to establish an ontology for the Web application design process
that defines the semantics of the specific Web application models in general.



Interoperability of Model-driven Web Engineering approaches 301

4.1. Advantages and disadvantages

Besides the separation of concerns, another advantage of this approach is the ability
of creating various model kinds in addition to the “classicals” (i.e., those conforming
to the levels of the Web applications): for example, if an (either existing or brand
new) methodology formalizes UML2 use case diagrams during the requirements
elicitation phase this forms a separate concern of the application that can be utilized
either in intra-method or inter-method weaving or both. (This is, of course, the
responsibility of the creator of the weaving(s).) This is true for creating a high-
level business process model for the application, as well. However, not all Web
applications are supposed to have models of all model types as the nature of the
application might not require some kind of models (e.g., a Web Service as a Web
application does not need a presentational model at all).

This approach can easily be applied to both PIMs and PSMs: let us suppose
that we have created an abstract presentational model which needs to be mapped
onto some concrete presentational technology (e.g., JSF, XHTML with XForms,
JSP, etc.). All what we need before deploying the UI is to create a model transfor-
mation that maps an abstract presentational model onto a PSM that conforms to
the chosen technology’s metamodel. This enables the extensibility of the framework
not only with subsequent PIM model types but with platform-specific technologies,
as well. The same applies also to other PIM—PSM transformations, of course. If
someone, for example, wants to use Spring Web Flow (SWF) and JSF in order to
capture the semantics of Web navigaton with the help of finite state machines, only
a weaving model that defines the relationship among navigational and presenta-
tional PIMs and SWF’s and JSF’s PSMs are needed.

Despite of the fact that we disagree with the existence of a common metamodel
for Web Engineering that can be widely and exclusively used, (the lattice of) meta-
models that are common regarding numerous methods can do us a good turn as
they can serve as reference (or pivot) models for transformations. However, these
metamodels do not deserve to be called “common”: from the framework’s point of
view, they are “regulars” that can be used the same way than any other (“non-
common”) metamodels (i.e., they are subject to intra- and inter-method weavings).

The whole idea allows some sort of customizing in the design process: the
designer can choose what artifacts need to be created to build the system and he/she
can either select an existing representation or create an own DSL for describing an
artifact.

However, there are drawbacks of the solution, as well. A lot of weaving models
need to be created even when having a relatively small number of methodologies
between which we would like to enable interoperability. This is especially true
when dealing with inter-method weavings since the non-existence of a pivot element
means that (supposing the worst case) they can only be defined pairwise (i.e., how
to relate method A’s concepts onto method B’s or method C’s and so on). This
task would be much easier if we had a common metamodel. Let us suppose that
we use UML2 class diagrams for describing structural information and we have
two methods, one of which uses relational model while the other one uses ER: all



302 A. Adamkó, L. Kollár

we need are the two-way mappings between relational model and UML2 and ER
and UML2, the mapping between relational and ER models can be derived by a
composition.

4.2. Conclusions and future work
In this paper we introduced our visions about the interoperability among the var-
ious existing model-driven Web engineering solutions. Our proposed solution is
heavily based on both some existing metamodels for the different domains (aspects)
of Web application design and the model transformations that provide mappings
for introducing new concerns into a methodology. This is only a step behind of the
creation of some ontologies for Web modeling which should result in more precise
understanding of the underlying (meta)models. This would also allow the tools
supporting MDWE methods to semantically understand and (re)use elements of
the different methodologies. However, there is a lot of work to do by the Web
Engineering community in order to define those ontologies.

Acknowledgements. The work is supported by TÁMOP 4.2.1./B-09/1/KONV-
2010-0007/IK/IT project. The project is implemented through the New Hungary
Development Plan co-financed by the European Social Fund, and the European
Regional Development Fund.

References

[1] A. Adamkó and L. Kollár. MDA-Based Development of Data-Driven Web Applica-
tions. In J. Cordeiro et al., editors, WEBIST (1), pages 252–255. INSTICC Press,
2008.

[2] S. Ceri, P. Fraternali, A. Bongio, M. Brambilla, S. Comai, and M. Matera. Designing
Data-Intensive Web Applications. Morgan Kaufmann Publishers Inc., San Francisco,
CA, USA, 2002.

[3] M. D. D. Fabro, J. Bézivin, F. Jouault, E. Breton, and G. Gueltas. AMW: a generic
model weaver. In Proc. of the 1čre Journée sur l’Ingénierie Dirigée par les Modčles
(IDM05), 2005.

[4] J. Gómez and C. Cachero. OO-H method: extending UML to model web interfaces.
pages 144–173, 2003.

[5] F. Jouault and I. Kurtev. Transforming Models with ATL. In J.-M. Bruel, editor,
MoDELS Satellite Events, volume 3844 of Lecture Notes in Computer Science, pages
128–138. Springer, 2005.

[6] A. Kalnins, J. Barzdins, and K. Podnieks. MOLA - MOdel transformation LAnguage.
http://mola.mii.lu.lv/, 2008.

[7] N. Koch and A. Kraus. Towards a common metamodel for the development of web
applications. Cueva Lovelle, Juan Manuel (ed.) et al., Web engineering. Interna-
tional conference, ICWE 2003, Oviedo, Spain, July 14-18, 2003. Proceedings. Berlin:
Springer. Lect. Notes Comput. Sci. 2722, 497-506 (2003)., 2003.



Interoperability of Model-driven Web Engineering approaches 303

[8] A. Kraus and N. Koch. A Metamodel for UWE, 2003.

[9] F. Molina, J. Pardillo, C. Cachero, and A. Toval. Towards a Requirements-Aware
Common Web Engineering Metamodel. In LA-WEB’08: Proc. of the 2008 Latin
American Web Conference, pages 75–82. IEEE Computer Society, 2008.

[10] N. Moreno, S. Meliá, N. Koch, and A. Vallecillo. Addressing new concerns in model-
driven web engineering approaches. In Proceedings of the 9th international conference
on Web Information Systems Engineering, WISE ’08, pages 426–442, Berlin, Heidel-
berg, 2008. Springer-Verlag.

[11] N. Moreno and A. Vallecillo. Towards interoperable Web engineering methods. J.
Am. Soc. Inf. Sci. Technol., 59(7):1073–1092, 2008.

[12] Object Management Group (OMG). Meta Object Facility (MOF) 2.0
Query/View/Transformation Specification, Final Adopted Specification, 2007.

[13] A. Schauerhuber, M. Wimmer, and E. Kapsammer. Bridging existing Web modeling
languages to model-driven engineering: a metamodel for WebML. In ICWE’06:
Workshop Proc. of the 6th Int. Conf. on Web Engineering. ACM, 2006.

[14] D. Schwabe and G. Rossi. An object oriented approach to web-based applications
design. Theor. Pract. Object Syst., 4(4):207–225, 1998.

[15] W. Schwinger and N. Koch. Modeling Web Applications, chapter 3, pages 39–64.
John Wiley & Sons, 2006.

[16] M. Wimmer, A. Schauerhuber, W. Schwinger, and H. Kargl. On the Integration of
Web Modeling Languages: Preliminary Results and Future Challenges. In 7th Int.
Conf. on Web Engineering, Workshop Proc., pages 255–269, 2007.

Attila Adamkó, Lajos Kollár
H-4032 Debrecen, Egyetem tér 1.


