Proceedings of the 8" International Conference on Applied Informatics
Eger, Hungary, January 27-30, 2010. Vol. 2. pp. 29-34.

Object-oriented Approach of Search
Algorithms for Two-Player Games

Mark Koésa, Janos Panovics

University of Debrecen
Faculty of Informatics
kosa.mark@inf .unideb.hu

panovics. janos@inf.unideb.hu

Abstract

The theory of two-player strategic games is a part of the introductory
course of Artificial Intelligence at the University of Debrecen. During the
seminars, we demonstrate to the students the minimax and negamax algo-
rithms with or without alpha-beta pruning.

In this paper, we present a possible object-oriented approach to implement
these algorithms. It is about a Java class hierarchy which makes it easier to
understand the operation of the algorithms described at the lectures of this
subject, and helps our students prepare for their exams.

Keywords: artificial intelligence, state space representation, algorithms for
choosing the next move, minimax algorithm, negamax algorithm, alpha-beta
pruning, object-oriented programming, class diagram

MSC: 68T20

1. Introduction

The games in which the players do not have influence to the outcome of the game
are called gambles (e.g. roulette, dice games). Research on these games acted as a
base of probability theory in the 17" century. Contrarily, in strategy games (e.g.
chess, bridge), the outcome of the game is actively affected by the players. Artificial
intelligence deals with such games—among other topics. Strategy games can be
classified by the following aspects:

e Considering the number of players, there are two-player, three-player, ...,
n-player games.

e Considering the length of the game, there are finite games in which each
player can choose from a finite number of moves, and each game terminates

29

30 M. Késa, J. Pdnovics

in a finite number of moves. Those games which are not finite are called
infinite games.

e Considering the sum of the players’ gains and losses, there are zero-sum and
non-zero-sum games. In zero-sum games, the sum of the players’ gains and
losses is zero.

e If a game has random factors, it is called stochastic, otherwise deterministic.

e In a game with perfect information, the players have all information related
to the game at their disposal. A game with imperfect information does not
have perfect information.

In the frame of the intorductory course of Artificial Intelligence, we deal only
with finite, deterministic, zero-sum, two-player strategy games with perfect infor-
mation. In the practice courses, we create state space representations for a couple
of such games first, then implement them in Java programming language, and fi-
nally test them. To make the implementation easier, we developed a Java package
which we can use to play an arbitrary game using an arbitrary search algorithm
after correctly parameterizing it.

2. The Class Hierarchy

In this section we present the class hierarchy used in the practice courses. The rec-
ommended Java packages contain classes related to the state space representation
and the algorithms for the choosing tje next move (see Figure 1).

The Operator class in the allapotter package is the abstract superclass of the
operators for each game, while the Allapot class is the abstract superclass of the
games themselves. As the properties of a state always depend on the particular
game, we define only two attributes in the latter class. One of them is the set of
all operators applicable to the states of the game, and the other one represents
the player which is in turn in the current state. Independently of the game, each
state knows if it is a final state, and if so what the result of the game is (which
player wins or whether the game is a tie). We can also examine if an operator is
applicable to the state or not, and we can give the state which derives from the
current state by applying the operator. We can realize the human players’ input
by implementing the abstract beker method.

Classes implementing the algorithms related to games are placed in the jatek
package. The superclass of the algorithms for choosing the next move is the abstract
LepesAjanlo class. The attributes of these class store the state, the depth of the
search, the suggested operator, the utility functions’s value of the state reached by
the suggested operator, and the number of states evaluated during the search. The
values of these attributes will be computed by the concrete algorithms implemented
in the derived classes. These algorithms can be compared to one another with the
help of the number of evaluated states.

Object-oriented Approach of Search Algorithms for Two-Player Games 31

==lava Class== ==dava Class== ==lava Class==
@ Jatek & Allapot Operator
jatek allapotter #operatorok allapatter
5 EMBER_ELLEN: int & jatekos: char o
% GEP_KEZD: int & yetOperatorok(): Collection<Operator= #operator 0.1
& nEGAMAK. int @ oetlatekos(); char
S ALFASETA: nt @ valtdatekos(r void
S MINGS_AJANLAT:int o' vegdiapat(): boalean
5F MELYSEG: int #hezdoslianot _| o myertd(): bootean Z<lava Classe»
< emberElen: boolean /,/’UIIJ) & nyertBy). bootean Addirich @ LepesAjanio
< gephezd: boolean o' slofeltetel/Operator): boolean 0. Jatek
< negamsx; boolesn & alkalmart Operator): Aliapct 5F pLUSZ WEGTELEN: int
< alfabeta: boolsan P e 5F MINUSZ_VEGTELEN: int
@ nincsdjanlat: boolsan & hegamaxHasInnssag(); int v melysed int
< gepidelysed: int & bekerf): Oparator > hasznossag: int
< emberiMelyse: int o allasokSzama: int
& Jatek(Allapct)
& Jatek(Allapct,int)
& Jatek(Allapct,irt irt,int)
@ jellemzok(): String
@ jatsziki): woid
@ toStringl): String

==lava Clags=> ==lava Class=> ==Java Clags== ==lava Clasgs=>
(& MinimaxAlgoritmus (5 NegamaxAlgoritmus (5 AlfaBetaMinimax (5 AlfaBetaNegamax
jatel jatek jatek jatek

& Winimax Algoritmust Allapot int) o Negamaxalgoritmus(Allapot int) < alta int © glfa int

@ toStringl) String @ toStringl) String < heta: int © heta int
re'fAIfaEletaMinimax(Allapnt‘irvt) OC AlfaBetablegamax Allapot,irt)
:{fAIfaEIetaMmlmax(AllapotJrrt,lm,lnt] DC AltaBetablegamax Allapot,int int,int)
@ toStrinal): String @ taStrinal) String

Figure 1: Class diagram of the search algorithms.

The concrete algorithms for choosing the next move work recursively by insta-
tiating objects of the concrete algorithm classes. Because of this, there was no
need for methods other than the constructors (see the source code of the negamax
algorithm in Figure 2). Classes of algorithms using alpha-beta pruning have been
extended by two attributes which represent the alpha and beta values that belong
to each node of the game tree.

The jatszik method defined in the Jatek class is responsible for controling
the game. The body of this method contains a loop which runs until the current
state instance is a final state. While in the loop, it displays the current state and
determines which player is in turn. If we play interactively and the human player is
in turn, it will read the player’s move, otherwise it instantiates an algorithm object
and determines the computer’s move using this object. Afterwards, it applies the
operator representing this move in both cases and updates the current state.

We can customize the games and the algorithms for choosing the next move
at the time of the game’s instantiation. We can choose whether a human player
plays against another human player or a computer player. In the latter case, we
can also tell the algorithm which player will make the first move. We can set
either minimax or negamax algorithm as the algorithm for choosing the next move
and we can decide whether or not these algorithms should use alpha-beta pruning.
We may ask for a suggestion for the human player. Similarly to the case of the
computer’s move, this suggestion will be computed by instantiating an algorithm
object. The human player may either accept or reject this suggestion. Additionally,

32 M. Késa, J. Pdnovics

package jatek:
import allapotter.#*;

public class NegamaxAlgoritmus extends LepesBAjanlo |
public NegamaxAlgoritmus(Allapot allapot, int melyseg) {
this.allapot = allapot:
this.melyseg = melyseg;
allasckSzama = 1;
if (allapot.wvegRAllapot() || melyseg ==)
hasznossag = allapot.negamaxHasznossag():
else {
hasznossag = MINUSZ VESTELEN:
for (Operator op : Allapot.getOperatorok())
if (allapot.elofeltetel(op)) {
Allapot uj = allapot.alkalmaz(op)
NegamaxAlgoritmus negamax = new NegamaxAlgoritmus{uj, melyseg-1);

if (-negamax.hasznossag > hasznossag) |
hasznossag = -negamax.hasznossag;
operator = op;

}

allasokSzama += negamax.allasokSzama;

}

Figure 2: Java source of negamax algorithm.

we can give different depths of search for computing the computer’s move and the
human’s suggestion.

The strength of the suggestion is affected by two factors. One of these factors
is the depth of the search, and the other is the efficiency of the utility function
applied to each state. Depending on the branching factor of the game tree, the
time required to compute the next move may increase exponentially by increasing
the depth of the search. That’s why it is worth to write as efficient utility function
as we can in the class of the actual game. If we can write a utility function that
can determine for every state of the game how much that state is good for each
of the players, then there is no point in setting the depth of the search to a value
greater than one. However, the coin has two sides. It may take a very long time to
evaluate a state, so what we really have to minimize is the product of the number
of evaluated states and the time spent for evaluating each state.

3. Implementation of a Particular Game

In this section we present a very simple version of the Nim game as an example.
The game is played by two players, A and B. They take turns adding 1, 2, or 3 to
an integer which has an initial value of 0 at the beginning of the game. The player
who reaches 21 wins.

When implementing this game, we should first create the operator which has

Object-oriented Approach of Search Algorithms for Two-Player Games 33

==Java Clasz==
@ Anapot
allapotter
< jatekos: char

o petperatork() Colectionzcperatars
@ getlatekos(): char

@ vattJatekos(): void ==lave Classs=
B) #operatorok

@' vegdiigpot(): boolean - @ Op:

& nyerta(): booiean 0. allapotter

& nyertB(): bogisan

&}A elofeketel{ Operatar): boalean
&}A alkaimaz{Operator): Allapat
QA minimaxHasznossag): int
o" negamaxHasInessag()int
&}A beker(): Operator

=2lava Clagsss e lava Clagg== == Java Class==
(9 HuszonegyAllapot (® HuszonegyMain (9 Huszonegyl epes
huszonemy huszonegy huszonagy
S novekmeny: int] & main(Strin il o novekmeny: int
o szam. it - & HuszoneoyLepes(int)
CfHuszonagyAllapm() @ gethovekmery(): int
<_‘>CHusznnagyAIIapnl(HusmnegyAllapnt) @ toStringl): String

@ vegdlapot(): boolean

@ nyertA() boolean

@ nyertB(): boolean

@ minimaxHasznossagl). int

@ negamsx=Hasznossagl) int
@ elofetetel{Operstor): boolean
@ alkalmaz{Operator]: Allapot
@ heker(): Operator

@ toString(): String

Figure 3: Class diagram of a very simple Nim game.

only one argument, the increment. The superclass of the class representing the
operator will be the abstract Operator class.

The class representing the states of the game will be derived from the abstract
Allapot class. We declare an integer as the only attribute of the game. Creating
the methods which check the final state, the winner, the operator application pre-
conditions and generate the new state produced by the operator is self-evident. The
heuristic information used for evaluating the states may be implemented in only
one of the methods minimaxHasznossag and negamaxHasznossag, as the other
method can be easily implemented based on that.

The game itself will be instantiated in a different class which contains only the
main program. We give the settings of the game along with the instantiation. After
this, the game can be started and played by calling the jatszik method.

References

[1] STUuART RUSSEL, PETER NORVIG, Mesterséges intelligencia modern megkdzelitésben,
Panem, 2005.

[2] FEKETE IsTVAN, GREGORICS TIBOR, NAGY SARA, Bevezetés a mesterséges intelli-
gencidba, LSI Oktatokozpont, 1990.

34 M. Késa, J. Pdnovics

[3] Mesterséges intelligencia (szerk.: Futé Ivan), Aula Kiado, 1999.

Mark Koésa

Janos Panovics
University of Debrecen
Faculty of Informatics
H-4032

Egyetem tér 1.

