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Abstract

We consider a single-server retrial queueing system with a finite number
of homogeneous sources generating requests after a random time. The service
of an arriving customer finding the server idle starts immediately; otherwise
the request enters into an orbit from where the calls are repeated after a
random time. Upon completion of a service, with a certain probability the
server searches for an orbiting customer. We assume the search time to be
negligible.

While modeling generation, retrial, and service times by their first two
moments, we are interested in steady-state performance measures. The nov-
elty of the investigation is the discussion of the second moment’s effect on
the performance of finite-source retrial queues with orbital search.

The MOSEL-2 tool is used to formulate and solve the problem resulting in
various illustrative numerical examples showing the effect of the the moments
and the search probability on the mean response time of the requests.
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1. Introduction

Frequently when modeling practical applications, random system behavior cannot
be described exactly enough by assuming exponentially distributed random vari-
ables. Then, in addition to the random variables’ means, at least their second mo-
ments, often represented by the variance or squared coefficient of variation, should
also be taken into account. The mean and the variance can easily be calculated
from measurement samples.

In this paper, we discuss the influence of the variance of the random generation,
retrial, and service times on the performance of finite-source retrial queues with
orbital search. Hence, the present paper is a natural generalization of the authors’
work [13] that quantitatively investigates the server’s search for orbiting customers
in finite-source retrial queues within an exponentially distributed setting.

While there is a considerable amount of work on infinite-source retrial queues
with non-exponentially distributed generation, service, and/or retrial times (see [3]
and references therein), finite-source retrial queues are discussed relatively rarely
in the literature in this regard (see, e.g., [8, 2]). Additionally, we are not aware of
any previous results on non-exponentially distributed generation, retrial, and/or
service times in the context of finite-source retrial queues with orbital search.

In this paper, to preserve mathematical tractability of the model, we follow the
method of phases (see Sec. 2.2) to approximate general distributions. This allows
us to apply the Markovian methodology (see, e.g., [6, Ch. 3]) for model analysis.
Moreover, we restrict ourself to the single-server case.

The remainder of this paper is organized as follows. In Sec. 2, we present a
detailed model description, the phase-type approximation leading to the underlying
Markov chain, and the performance measures of interest. In Sec. 3, the model
is validated against related work and the influence of the generation, retrial, and
service times’ second moments on the mean response time of the finite-source retrial
queue with orbital search is discussed. Finally, we summarize the paper and give
directions to future work in Sec. 4.

2. Investigated Retrial Queueing Model

We first define more formally the model under investigation together with its pa-
rameters and performance measures of interest.

2.1. Model Description

The retrial queue with orbital search is illustrated in Fig. 1. The model parameters
are summarized in Tab. 1. Each of the K sources generates a maximum of 1 job
at a time after a generally distributed random generation time with mean value
T, and squared coefficient of variation (SCV) ¢3. We call A = 1/%, the generation
rate. A job leaving the sources enters the server unless the latter is already busy.
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Figure 1: Visualization of retrial queue with orbital search.

Unlike classical first-come first-served (FCFS) queueing systems, an arriving
job finding the server busy does not enter a queue but enters the orbit instead.
Since jobs can only enter the orbit if a job is located at the server, the maximum
number of jobs at the orbit is K — 1. Orbiting jobs are re-trying to get access to
the server after a generally distributed random retrial time with mean value ,, and
SCV 2. We call v = 1/, the retrial rate.

The server processes jobs with a generally distributed random service time with
mean value 7, and SCV ¢;. We call y = 1/, the service rate. After service, the
processed job returns to the sources, starting a new job generation process. At the
same time, with a probability of p, the server searches in the orbit for a job to
be processed next immediately (depicted by the link symbol in Fig. 1). We call p
the orbital search probability. With probability 1 — p the server does not conduct
orbital search.

Default Values
Parameter Symbol | Range (a) (b) (©)
Number of sources (jobs) K N 3 4 3
Mean generation time |y =1/A| RT 1...10% 4/3 8
SCV of generation time 2 RT 1 0.5,1,5 1
Mean service time t,=1/u| Rt 1 1 1
SCV of service time ci R* 1 0.5,1,5 1
Mean retrial time I,=1/v| R* 200, 103 ~0 4
SCV of retrial time c2 R* 1 1 1
Search probability P (0,1) [107%...0.99 ~1 0.01, 0.5, 0.99

Table 1: Main model parameters with default values for validation
and evaluation scenarios: (a) Section 3.1.1, (b) Section 3.1.2, (c)
Section 3.2.
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2.2. Phase-Type Approximation

Remember that the generation, service, and retrial time distributions of the model
described in Sec. 2.1 are given by (at least) their mean # and SCV ¢?. To map this
model to a stochastic model that is mathematically more tractable, we approxi-
mate these distributions by phase-type constructs depending on the SCV ¢? of the
respective distribution as follows.

e ¢> = 1: In this case, the general distribution is replaced by an exponential
distribution with rate parameter u' = % which comprises a single phase only.

e ¢ > 1: In this case, the generalized exponential (GE) distribution (see,
e.g, [9, 7]) is chosen. The GE distribution has several advantages (when
compared to the hyperexponential or Cox distributions): (1) it involves the
least assumptions and arbitrary information in terms of higher moments (see
[10]), (2) it has been shown that the GE distribution less likely underestimates
mean queue lengths (see [10]), and (3), most important, its application does
not increase the state space of the underlying stochastic model since there
is only/ a single phase. The parameters of the GE distributions are given by
r_p

p' =% and p' = 1f62 (see [7]).

e ¢? < 1: In this case, the general distribution is replaced by a hypoexponential
distribution. The implementable recursive algorithm provided in [1] can be
used here to determine the rates of each of the [%] phases needed for the
approximation.

In the following, we refer to the resulting number of exponentially distributed
phases of the approximated generation, service, and retrial time distributions with
Tx, Ty, and 7, respectively. Due to space constraints, we refrain from presenting
more details on the phase-type approximation here. Moreover, the MOSEL-2 tool
takes care of generating the suitable phase-type constructs automatically.

2.3. Underlying Markov Chain

The system state of the presented retrial queue at time ¢ (including the phase-type
approximations) can be mapped to a continuous-time Markov chain (CTMC, see
[6]) X (t) = (C(t), N(t), A(t)) , where C(t), N(t), and A(t) describe the state of the
phase-type service, retrial, and generation process at time ¢, respectively:

o C(t) = (Cy(t), Co(t),. .., ém (t)), where C;(t) = 0,1 (1 < j <r,) is the state
of the j-th phase of the service process at time t.

o N(t) = (N11(t), N12(t),...,Ng_1.,,(t)), where N;;(t) = 0,1 (1 < i <
K —1,1<j<r,)is the state of the j-th phase of the i-th job following the
retrial process at time ¢.
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o A(t) = (Al,l(t),j\l,g(t), N 7AK—1,7‘)\ (t)), where /~\i7j(t) = 0, 1 (1 < ) < K, 1 <
j <)) is the state of the j-th phase of the i-th job following the generation
process at time t.

We refer the interested reader to [13, Fig. 3] for a graphical representation of
the CTMC for K =4 and ¢} = ¢}, = ¢} = 1.

The state space S 3 of the CTMC X (t) is finite and irreducible, i.e., all states
are pairwise reachable from each other within finite time. Therefore, the CTMC
is ergodic for all values of the mean generation time t,. From now on, we assume
the system to be in the steady state, i.e., ¢ — oo. Then, the stationary state
probabilities of the CTMC are given by:

P(é,n,l) = lim P(C(t)=¢ N(t) =n, A(t) =1), (2.1)

where ¢, 71, and [ are the state vectors describing the distribution of jobs across the
phases of the service, retrial, and generation process, respectively.

The stationary state probabilities of the CTMC can be derived, e.g., by applying
standard Markovian analysis (see [6, Chap. 3]). In the following, we assume that
the stationary state probabilities are known.

Let us now define by X (t) = (C(t), N(t)) the stochastic process of the workload
distribution at time t, i.e., the distribution of jobs across the sources, server, and
orbit, with the number of jobs at the server C(t), the number of jobs in the orbit
N(t). Note that the number of request-generating sources A(t) results from A(t) =
K —(C(t)+ N(t)).

The stationary state probabilities of X (¢) can then be derived from the sta-
tionary state probabilities of the Markov chain X (¢) (recall Eq. 2.1) and are given
by

P(c,n) = lim P(C(t) = ¢, N(t) =n) = > P(¢,n,l) (2.2)

t—o0

K—1 ry
and ) > f;=n
i=1 j=1

with ¢ = 0,1 (server state) and n =0,..., K — 1 (number of orbiting jobs).

2.4. Main Performance Measures

Assuming the stationary state probabilities of X (¢) (Eq. (2.2)) are known, we are
now able to derive the most important performance measures as follows:

o Utilization of the server: Pu = Zi{:—ol P(1,n).

o Mean number of jobs in the orbit: N = Zi:o 25;01 nP(c,n).
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o Mean number of jobs in the orbit or in service:

M =3 oY nsg (ctn)Plen) =N+ p,.
K

o Mean number of job-generating sources: A=K - M.
o Mean overall generation rate of jobs: A=A\
e Mean response time (applying Little’s theorem, [6, p. 245]): T=DM/X.
e Mean waiting time (applying Little’s theorem): W =N/\.

3. Numerical Results

For the model evaluation, we use the MOSEL-2 (cf. [12]) tool. The tool allows
to conveniently specify the model described in Sec. 2.1 by the help of a textual
modeling language. Due to space constraints, we refrain from reproducing the
MOSEL-2 models in this paper. The models can be obtained from the first author
on request. Alternatively, a related model discussing the purely exponential case
(¢} = ¢& = ¢l = 1) is presented in [13].

After specifying the model, the MOSEL-2 evaluation environment takes care
of approximating the general distributions by phase-type constructs based on the
given mean value and variance (according to Sec. 2.2) as well as generating and
solving the underlying CTMC. The results can be accessed in form of steady-state
probabilities of the stochastic process X(t) or directly, i.e., more conveniently, in

form of, for example, node utilizations (px, pv, pu) and mean node workloads (A,

N). Together with the equations given in Sec. 2.4, all main performance measures
of interest can then easily be obtained.

3.1. Model Validation

3.1.1. Validation for ¢} = ci = c¢2 = 1 with Retrials

First, we validate our model using results available in [13, Fig. 4]. Since [13| consid-
ers finite-source retrial queues with exponentially distributed generation, service,
and retrial times only, we set ci = ci = ¢2 = 1 in our current model. All other
model parameters are adopted from [13, Tab. 3] and replicated in column (a) of
Tab. 1 for the reader’s convenience.

The resulting trend of the mean response time T (y-axis) depending on the
generation rate A\ (x-axis) is shown in Fig. 2 for different values of the retrial
rate v and orbital search probability p. Fig. 2 exactly matches [13, Fig. 4]. For
more detailed discussions of the exponential case resulting in the maximum mean
response time illustrated in Fig. 2, we refer the interested reader to [13] and [14].
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in column (a) of Tab. 1 and ¢3 = sponse time T for different search
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3.1.2. Validation for ¢ # 1 and/or ci # 1 without Retrials

In this section, we compare the proposed model with G/G/1/K — FCF'S closed
tandem queueing network models without retrials. For this, we set p ~ 1 and
v & oo to achieve a non-retrial, FCFS-equivalent service discipline. Additionally,
the source model is adapted to account for state-independent arrival rates.

Results for the node utilizations in a G/G/1/K —FCFS closed tandem queueing
network model are derived by Kouvatsos in [9, Tab. 3] by using the maximum
entropy method (MEM; see [9] for details). We produced additional results for an
equivalent tandem network using WinPEPSY (see [5], [4], or [6, Sec. 12.1.5]) by
applying discrete-event simulation (cf. [6, Chap. 11]) and Marie’s method (cf. [6,
Sec. 10.1.4.2]).

For comparison, we adopt the model parameters used in [9] as summarized in
column (b) of Tab. 1. The variable values of ¢3 and ci are given in Tab. 77 together
with the obtained results. It can be seen that our results are very close to the ones
obtained by the other methods in general. The best fits across all methods are
achieved for the exponential case (¢ = ¢ = 1). For ¢§ > 1 and/or ¢, > 1, our
results (column P) are very close to the ones derived using the MEM (column fC,
cf. [9]) since both approaches use the GE distribution. For ¢} = ¢, = 0.5, our
results are closer to the simulation results (column &) than the ones derived with

Marie’s method (column M) or the MEM.

3.2. Influence of Variance on Mean Response Time

Unless stated otherwise, in this section, we use the default parameters defined in
column (c) of Tab. 1.
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2 2 M P Pu

" S M P K S M P K S M P
0.5 0.5|1.298 1.350 1.297]0.964 0.956 0.951 0.958|0.723 0.717 0.723 0.718
0.5 1.0(1.340 1.372 1.372]0.924 0.916 0.927 0.927]0.693 0.687 0.695 0.695
0.5 5.0|1.455 1.449 1.580|0.782 0.830 0.827 0.781]0.587 0.622 0.620 0.586
1.0 0.5]1.409 1.405 1.405|0.924 0.931 0.923 0.923 |0.603 0.698 0.692 0.692
1.0 1.0]1.423 1.444 1.44410.896 0.901 0.896 0.896 |0.672 0.676 0.672 0.672
1.0 5.0]1.535 1.491 1.592]0.768 0.807 0.803 0.768 |0.576 0.605 0.602 0.576
5.0 0.5|1.787 1.599 1.604 |0.753 0.843 0.840 0.753 |0.565 0.632 0.629 0.565
5.0 1.0|1.607 1.607 1.610|0.745 0.816 0.816 0.745]0.559 0.612 0.612 0.559
5.0 5.0|1.595 1.591 1.642|0.700 0.740 0.749 0.700]0.525 0.555 0.561 0.525

Table 2: Comparison to closed G/G/1/K — FCFS tandem queue-

ing network model for ¢3 # 1 and/or ci # 1 (S: WIinPEPSY with

simulation; M: WinPEPSY with Marie’s method; P: using phase-
type approximation (Sec. 2.2); K: results provided by [9]).

3.2.1. Influence of Generation Time Variance

In Fig. 3, the influence of the generation time’s SCV ¢3 (0.1 < ¢3 < 20; x-axis) on
the mean response time T (y-axis) is shown for different values of the orbital search
probability p € {0.01,0.5,0.99}. Evidently, in contrast to the FCFS-equivalent
case (p = 0.99), ¢3 has a significant effect on the mean response time T for the
cases of distinctive retrial behavior (p € {0.01,0.5}). Consequently, both the retrial
behavior and the second moment of the generation time should be considered when
discussing the performance of real systems.

For p € {0.01,0.5}, Fig. 3 shows a maximum of the mean response time T
for ¢3 &~ 0.5. Hence, the exponential case ¢; = 1 can be neither considered as
optimistic nor pessimistic performance bound.

Obviously, the FCFS-equivalent case (p = 0.99) gives an optimistic perfor-
mance bound. Retrial systems will always perform worse with respect to the mean
response time 7' when compared to FCFS systems. It is well-known that the per-
formance of finite-source G/M/1/N — FCF'S queueing systems is independent of
the generation time’s SCV ¢3 (see, e.g., [11]). This is also reflected in Fig. 3, where
T is (basically) constant for p = 0.99. Moreover, for high values of 3, T appar-
ently approaches the mean response time of G/M/1/N — FCF'S queueing systems
independently of p.

3.2.2. Influence of Retrial Time Variance

In Fig. 4, the influence of the retrial time’s SCV ¢2 (0.1 < ¢2 < 20; z-axis) on
the mean response time T (y-axis) is illustrated for different values of the orbital
search probability p € {0.01,0.5,0.99}.

Obviously, for orbital search probabilities close to 1, the model approaches the
FCFS-equivalent case, and consequently, ¢? has negligible effect on T only. On
the other hand, the influence is more significant for smaller values of p while (in
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contrast to Fig. 3) a maximum of T is not observable for ¢2 # 0.

Similar to the discussion of ¢3, it can be seen in Fig. 4 that assuming ex-

ponentially distributed retrial times (c2 = 1) provides neither an optimistic nor
pessimistic performance bound. Likewise, for high values of ¢2, T approaches the

mean response time of G/M/1/N — FCFS queueing systems independently of p.
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3.2.3. Influence of Service Time Variance

The influence of the service time’s SCV ci (0.1 < ci < 20; z-axis) on the mean
response time T (y-axis) is depicted for different values of the orbital search prob-
ability p € {0.01,0.5,0.99} in Fig. 5.

In contrast to Figs. 3 and 4, ci has notable influence on T for all values of p and
hence should be considered for non-retrial and retrial queues alike. The shortest
mean response time is still achieved in the FCFS-equivalent case where p = 0.99.

4. Conclusion

In this paper, we provide a model of a finite-source retrial queueing system with
orbital search where the job generation, retrial, and service times are random vari-
ables modeled by their first two moments (represented by mean and squared co-
efficient of variation). Numerical results are obtained by employing the MOSEL-2
tool. The results show that the second moments have a fair effect on the mean
response time of the investigated retrial queue.

Hence, both the retrial behavior and the second moment need to be taken into
account when analyzing the performance of real systems. Assuming exponentially
distributed job inter-arrival or service times and ignoring retrial effects might lead
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to severe overestimation of system performance with negative impact on the appli-
cation.

In near future, we plan to exploit the proposed model for the analysis of wireless
multi-hop communication.
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