
Proceedings of the 8th International Conference on Applied Informatics
Eger, Hungary, January 27–30, 2010. Vol. 2. pp. 237–245.

Timestamp-resolution Problem of Traffic
Analysis on High Speed Networks

Peter Orosz, Tamas Skopko

Faculty of Informatics, University of Debrecen, Debrecen, Hungary
e-mail: oroszp@unideb.hu, skopkot@unideb.hu

Abstract

Tcpdump and Wireshark are commonly used tools for analyzing network
traffic between two communicating endpoints over the internet. Capture
capabilities of these tools are based on the libpcap library. This library’s 1.0.x
version only supports 10−6 second native timestamp resolution, however on
Gigabit Ethernet and faster network speeds nanosecond resolution would be
preferred.

Timestamp generation precision depends on other factors too, like kernel
packet handling, network driver operation, clock source etc.

In our paper we will show why nanosecond resolution is necessary on
Gigabit Ethernet or higher speed networks and the crucial parts of the Linux
kernel infrastructure in point of timestamp generation.

Keywords: libpcap; timestamp resolution; inter-arrival time; linux kernel;
high speed network

1. Introduction

As network speeds get faster more and more studies show that packet timestamp
resolution should be more precise [1][2][3]. Because of the lack of the necessary soft-
ware infrastructure and/or computing power most of the implementation ended up
with hardware-based capturing solutions that provide enough precision for todays
1Gbps and 10Gbps link speeds [1][3].

Libpcap library - the heart of widely used capture applications like tcpdump and
Wireshark - currently supports microsecond precision for sub-second information.
By targeting the nanosecond precision, this paper is focusing on the possibility of
a universal, purely software-based solution for computers running Linux OS and
capture utilities based on the libpcap library [4].

237

238 P. Orosz, T. Skopko

2. Background

One of the most important trace parameters is timestamp that represents a unique
time moment when a frame is transmitted or arrives. Packet delay of the consec-
utive frames could be easily determined. However, inter-arrival time (∆t) must
conserve the correct time domain relation between two consecutive frames [7].

3. Problem Definition

3.1. Link speed

The higher the transfer rate the higher time resolution is required for timestamping
packets. Table 1 shows accuracy requirements at 1 Gbps link speed at full rate.
We can consider that timestamp deltas between two 1518-byte consecutive frames
are in the microsecond domain, however transmission of 64-byte frames claims
nanosecond precision resolution, notably 608 ns.

Table 1: Gigabit Ethernet time parameters

As shown by Table 2 at 10 Gbps transmission rate these prerequisites are even
higher: approx. 60 ns resolution for 64-Byte frames.

Timestamp-resolution Problem of Traffic Analysis on High Speed Networks 239

Table 2: Ten Gigabit Ethernet time parameters

3.2. NIC driver architecture
A network device driver can notify the kernel about packet reception using inter-
rupts. This can be done after every received packets or after receiving a specified
number of packets. At low network traffic this method might be efficient enough
but when network load gets higher the system could get overloaded. Linux kernel
provides another method for getting received packets from device driver to ker-
nel space called polling mode. This eliminates the need for using interrupts by
querying the driver about received packets time to time.

Figure 1: Sk_buff structure of the linux kernel

240 P. Orosz, T. Skopko

An intelligent network driver design combines this two modes using the kernel
feature NAPI: at lower traffic it uses interrupts, at higher load it switches to polling
mode.

3.3. The OS kernel

Received packets by the network driver are enqued by the kernel queue handler.
The sk_buff data structure is used to store information about the packets en-
queued. This stucture has the tstamp member - a 64-bit integer - to store en-
queuing time information. Its higher 32-bit part is used to store the number of
seconds, the lower 32-bit part is used to store subsecond information. Its length
makes possible to represent time in the nanosecond domain.

Timestamps can be assigned at two different points: at physical reception by
the device driver or at enqueueing. The first case is out of our scope because it
is based on jiffies. They are the kernel heartbeats with a maximum of 1000 Hz
therefore they can provide time information in 1 ms resolution only. The second
method seems to be more relevant to us because it represents when packets are
made available for further processing.

3.4. Packet Delay Variation

IP Packet Delay Variation (IPDV) is an IETF RFC 3393 proposal [6][7].

dT2 − dT1 = ddT

where
dT1 . . . delay of a packet sent at time T1
dT2 . . . delay of a packet sent at time T2
ddT . . . type-P-one-way-ipdv from Src to Dst

Delay-per-hop
dH = dt + dp + dq

where
dH . . . delay per hop
dt . . . transmission delay
dp . . . processing delay (in the router)
dq . . . queuing delay (in the router)

dT =
n∑

i=1

dHi

End-to-end delay:
where

dT . . . end-to-end delay
dH . . . delay per hop

Timestamp-resolution Problem of Traffic Analysis on High Speed Networks 241

n . . . number of hops
We assume that IPDV has a Gamma distribution function

f(x; k; θ) = xk−1 e−x/θ

θkΓ(k)
where x, k, θ > 0

64-byte packets have been generated according to the Gamma distribution on a 1
Gbps connection (Fig. 2).

Figure 2: Gamma distributed PDV of 64-byte frames at 1Gbps
transmission rate

It can easily be shown out that microsecond time resolution could be insufficient to
describe the time domain relation between packet arrivals on Gbps or higher speed
network path [5][8].

3.5. Libpcap
Commonly used network traffic capture programs like tcpdump are based on libp-
cap. This library implements functions to get packets dequeued from the kernel
but it handles time information in the microsecond time domain only.

Under Linux, it can use Linux MMAP support (memory mapping) for doing a
more “virtual tapping” by reducing memory block copies. When this feature is not
available, the SIOCGSTAMP IOCTL call is used to query timestamp information
which is less efficient.

3.6. Time synchronization
Let us assume that we monitor network traffic at both end of a 1Gbps path. In
order to precisely reproduce time domain relation between consecutive packets,
endpoints clocks have to be time-syncronized within a 600 ns precision during the
capture. 10Gbps requires 60 ns precision accordingly.

242 P. Orosz, T. Skopko

Requirement for end-to-end time syncronization precision is proportional to the
connection speed of the link.

Alternative sync mechanisms for the 1000 to 10 ns time domain, as shown by
Fig 3.:

• Network Time Protocol. At its best NTP could keep the time sync between
within 1 ms for two IP host [12]. Not suitable for nanosecond resolution. A
kernel level implementation can be subject of study.

• National Semiconductor Phyter (IEEE 1588 V1 and V2 compatible). The
PTP protocol with hardware support [12]. It is suitable since its 10 ns accu-
racy.

• GPS: Endace boards use this method. Their 7.5 ns accuracy make them
suitable.

When measurement scenario makes it possible, custom sync frame could be
used over a dedicated low latency LAN environment built between the nodes and a
time server for time synchronization. Theoretical conditions for accurate syncing:

• The nodes are connected via a network hub to the time server.

• All cabling to be the same length and quality.

• All NIC cards used for syncing should by the same type.

• Hardware and OS environments preferrably uniform for possibly equivalent
packet paths and processing times.

Table 3: Efficiency of different time synchronization methods

4. How to take high resolution traces

FPGA-based capture cards are very efficient. Hardware solutions like Endace DAG
boards provide rather good resolution but are expensive. They provide very accu-
rate clock synchronization by using GPS signals.

Timestamp-resolution Problem of Traffic Analysis on High Speed Networks 243

Interface cards featuring the National Semiconductor DP83640 Phyterare are
good values for the money too since they are IEEE 1588 compatible.

Optical only applications can tap the connection physically by splitting the
fiber.

Software solutions are cheap and easily accessible if nanosecond resolution could
be worked out. That’s why our research moves that direction.

5. Benefits of higher resolution

More accurate timestamping helps to better review data traversal between network
layers, adjust required buffer sizes to multimedia applications. Moreover, IPDV
could be observed more precisely, especially on 10Gbps or faster connections, if
timestamp accuracy is in correlation with the hardware-based solutions.

6. An advanced software-based approcach

Our main aim was to reveal and test all of the kernel functions and features that
will be essential elements in our project to enhance libpcap to a nanosecond-capable
capture library.

It is resonable to reach nanosecond resolution purely on software-based tapping:

• tstamp member of sk_buff structure is capable of nanosecond resolution

• Linux kernel function ktime_get_real() to query system clock in nanosecond
resolution

• This function is adequate to fill up nanosecond tstamp fields in sk_buff.

• Accordingly user-space applications (such as libpcap-based ones) could dis-
play/process 10−9 second resolution timestamps.

• For cost-efficient time synchronization dedicated LAN interfaces and a PTP
timing protocol could be used within a low latency wired environment.

Input queue handler within the 2.6 kernel puts a 64-bit timestamp to each
enqueued frame.

Linux kernel API features ktime_get_real() function that enables us to retrieve
nanosecond resolution timestamps from the kernel.

For ns resolution we assume that main CPU is operates at least at 1GHz master
clock speed.

include/linux/sk_buff.h:

struct sk_buff {
/*These two members must be first.*/

244 P. Orosz, T. Skopko

struct sk_buff *next;
struct sk_buff *prev;

struct sock *sk;
ktime_t tstamp;
struct net_device *dev;

(...)
}

include/linux/ktime.h:

union ktime {
s64 tv64;

#if BITS_PER_LONG != 64 &&
!defined(CONFIG_KTIME_SCALAR)

struct {
ifdef __BIG_ENDIAN

s32 sec, nsec;
else

s32 nsec, sec;
endif

} tv;
#endif
};

typedef union ktime ktime_t;

7. Summary

High resolution traces help to analyze high performance networking protocols and
multimedia applications. Our key achievement is to collect all the corresponding
kernel functions and features that are essential to enhance libpcap a nanosecond-
capable capture library. However this software-only method has to be validated
against hardware-based solutions by making simultaneous traces.

References

[1] The DAG project, http://dag.cs.waikato.ac.nz

[2] Attila Pásztor, Darryl Veitch, PC based precision timing without GPS, Proceed-
ings of the 2002 ACM SIGMETRICS international conference on Measurement and
modeling of computer systems, June 15-19, 2002, Marina Del Rey, California, USA

[3] Cace TurboCap network interface card, http://www.cacetech.com/products/
turbocap.html

Timestamp-resolution Problem of Traffic Analysis on High Speed Networks 245

[4] Libpcap, a common open source packet capture library for Unices, http://www.
tcpdump.org/

[5] Gianluca Iannaccone, Christophe Diot, Ian Graham, Nick McKeown, Monitoring
very high speed links, Proceedings of the 1st ACM SIGCOMM Workshop on Internet
Measurement, November 01-02, 2001, San Francisco, California, USA

[6] IETF RFC2679, A one-way delay metric for IPPM, http://www.ietf.org/rfc/
rfc2679.txt

[7] IETF 3393, IP Packet Delay Variation Metric for IPPM, http://www.ietf.org/rfc/
rfc3393.txt

[8] Jörg Micheel, Stephen Donnelly, Ian Graham, Precision timestamping of network
packets, Proceedings of the 1st ACM SIGCOMM Workshop on Internet Measure-
ment, November 01-02, 2001, San Francisco, California, USA

[9] TSC, http://en.wikipedia.org/wiki/Time_Stamp_Counter

[10] Wireshark, http://www.wireshark.org/

[11] Christian Benvenuti, Understanding Linux Network Internals, O’Reilly, 2006

[12] Precision PHYTER - IEEE 1588 Precision Time Protocol Transceiver, http://www.
national.com/pf/DP/DP83640.html

