
Proceedings of the 8th International Conference on Applied Informatics
Eger, Hungary, January 27–30, 2010. Vol. 2. pp. 227–235.

An Experimental Study of Minimum Cost
Flow Algorithms*

Zoltán Királya, Péter Kovácsb

a Department of Computer Science and CNL
b Department of Algorithms and Their Applications and CNL

Eötvös Loránd University, Budapest
e-mail: kiraly@cs.elte.hu, kpeter@inf.elte.hu

Abstract

This paper presents an experimental study of efficient algorithms for the
minimum cost flow problem. It is more comprehensive than earlier surveys
both in terms of the range of considered implementations and the size of the
test instances. In the cost scaling algorithm, Goldberg’s partial augment-
relabel method was also applied, which is a novel result.

The studied algorithms were implemented as part of the LEMON C++
optimization library (http://lemon.cs.elte.hu). They were compared to
widely known efficient solvers, namely, the corresponding method of the
LEDA library and three public codes: CS2, RelaxIV, and MCF. Our im-
plementations turned out to be comparable and often superior to them.

Keywords: graph, network, flow, minimum cost flow, algorithm, implementa-
tion, optimization, performance

MSC: 05C21

1. Introduction

The single commodity minimum cost flow problem is one of the most fundamental
models in network flow theory. It is to find a feasible flow of minimum total cost
from a set of supply nodes to a set of demand nodes in a network with capacity
constraints and arc costs. This model can be used directly in various real world
applications, which arise in transportation, logistics, telecommunication, network
design, resource planning, scheduling, and many other industries. Moreover, it

*Research is supported by EGRES group (MTA-ELTE) and OTKA grants CNK 77780,
K 60802, CK 80124 and NK 67867.

227

228 Z. Király, P. Kovács

often arises as a subproblem in more complex optimization models, such as multi-
commodity flow problems. A comprehensive survey of the theory and applications
of this problem can be found in the book of Ahuja, Magnanti, and Orlin [1].

In the last decades, several algorithms were developed for the minimum cost
flow problem. They have been studied and compared both from theoretical and
practical aspects, and various implementations are available under different license
terms. Our main contribution is the highly efficient implementation of several
algorithms with some new heuristics and the comparative analysis of their per-
formance in practice. Furthermore, the application of Goldberg’s recent partial
augment-relabel idea [7] in the cost scaling algorithm is an essential novel result.
Our implementations are available with full source code as part of the LEMON
graph library [12]. LEMON is an abbreviation of Library for Efficient Modeling
and Optimization in Networks. It is an open source C++ template library with
focus on combinatorial optimization tasks related to graphs and networks.

Numerous benchmark tests were performed on many kinds of large-scale ran-
dom networks (containing up to millions of nodes and arcs), as well as some real-life
problem instances. In most cases, the network simplex and the cost scaling im-
plementations were the fastest. The latter one typically performs better on large
sparse networks. Compared to various public solvers, our implementations proved
to be competitive or even faster.

The rest of this paper is organized as follows. Section 2 summarizes the used
definitions and notations. Section 3 describes the implemented algorithms and their
variants. Section 4 presents the main experimental results. Finally, the conclusions
are drawn in Section 5.

2. Definitions and Notations

Let G = (V, A) be a directed graph consisting of n = |V | nodes and m = |A|
arcs. We associate with each arc (i, j) ∈ A a lower bound lij ≥ 0, an upper bound
uij ≥ lij , and a cost cij , which denotes the cost per unit flow on the arc. Each node
i ∈ V has a signed supply value bi. We assume that all data are integral and we wish
to find an integral feasible flow of minimum total cost satisfying the supply/demand
constraints at each node. Therefore, the minimum cost flow problem can be stated
as

min
∑

(i,j)∈A

cijxij (2.1)

subject to ∑

j:(i,j)∈A

xij −
∑

j:(j,i)∈A

xji = bi ∀i ∈ V, (2.2)

lij ≤ xij ≤ uij ∀(i, j) ∈ A, (2.3)

where
∑

i∈V bi = 0. Without loss of generality, we may assume that all lower
bounds are zero and all arc costs are non-negative [1].

An Experimental Study of Minimum Cost Flow Algorithms 229

For a solution x ≥ 0 of the problem, we can define the residual network Gx =
(V, Ax), which contains forward and backward arcs. A forward arc (i, j) ∈ Ax

corresponds to each (i, j) ∈ A for which rij = uij − xij is positive. A backward
arc (j, i) ∈ Ax corresponds to each (i, j) ∈ A for which rji = xij is positive. These
rij and rji values are called the residual capacities of the arcs in Gx. The cost
of a forward arc (i, j) is cij , while the cost of a backward arc (j, i) is −cij . The
optimality conditions and most of the solution methods of this problem can be
stated more conveniently in terms of this residual network.

Theorem 2.1 (Negative cycle optimality condition). A feasible solution x of the
minimum cost flow problem is optimal if and only if the residual network Gx con-
tains no directed cycle of negative total cost.

The linear programming dual solution of this problem is represented by signed
node potentials πi. For a given potential function π, the reduced cost of an arc
(i, j) is defined as cπ

ij = cij + πi − πj . The following optimality condition is an
equivalent reformulation of Theorem 2.1 using node potentials and reduced costs.

Theorem 2.2 (Reduced cost optimality condition). A feasible solution x of the
minimum cost flow problem is optimal if and only if for some node potential func-
tion π, the reduced cost of each arc in the residual network Gx is non-negative.

3. Algorithms

This section provides an overview of the implemented algorithms and their variants.
The detailed explanation of these methods are omitted here due to page limit, but
they can be found in several books and papers. For more information about our
implementations, the readers are referred to the documentation and source code of
the LEMON library [12].

3.1. Cycle-Canceling Algorithms

Cycle-canceling is the simplest solution method for the minimum cost flow problem.
It applies a primal approach based on Theorem 2.1. First, a feasible solution is
found, which can be performed by computing a maximum flow. After that, the
algorithm successively finds directed cycles of negative total cost in the current
residual network and augments flow along them. When no negative cycle can be
found, the solution is optimal.

This method has many variants of quite different efficiency. In LEMON, two
strongly polynomial algorithms were implemented, both of which is due to Gold-
berg and Tarjan [8]. The first one is the minimum mean cycle-canceling algorithm
(MMCC), which runs in O(n2m3 log n) time, the other one is its improved variant,
the cancel and tighten algorithm (CAT), which runs in O(n2m2 log n). Apart from
these methods, a simple cycle-canceling variant (SCC) was also implemented, in

230 Z. Király, P. Kovács

which the negative cycles are found using the Bellman-Ford algorithm with suc-
cessively increased limit for the number of iterations. Our experiments show that
the SCC implementation greatly outperforms MMCC, but CAT is orders of mag-
nitude faster than both of them. Therefore, we only consider CAT in the following
comparisons.

3.2. Augmenting Path Algorithms

We also implemented two dual methods, the successive shortest path algorithm
(SSP) and the capacity scaling algorithm (CAS) of Edmonds and Karp [4]. Con-
trary to the primal approach of the cycle-canceling methods, the SSP algorithm
maintains a flow that is not necessarily feasible (it may violate constraint (2.2))
and node potentials so that they satisfy the conditions of Theorem 2.2. At each
step, the algorithm sends flow from an excess node to a deficit node along a shortest
path in the residual network with respect to the reduced costs and modifies the
potentials using the computed node distances. Therefore, it successively decreases
the total excess of the nodes until the solution becomes feasible.

The general SSP method performs O(nU) iterations, where U denotes the max-
imum supply value. Each iteration runs Dijkstra’s algorithm to find a shortest path
from a selected excess node to any demand node. The CAS algorithm is an im-
proved version of SSP that uses a capacity scaling scheme to reduce the number of
iterations to O(m log U). Both of these algorithms are relatively efficient in prac-
tice, but CAS is typically faster than SSP except for the simpler test cases in which
the optimal solution consists of only a few paths.

3.3. Cost Scaling Algorithm

The cost scaling method (COS) is another widely used approach for solving the
minimum cost flow problem based on a primal-dual scheme [9]. At each phase,
an ǫ-optimal primal-dual solution pair is computed for a suitable ǫ > 0 value.
It means that cπ

ij ≥ −ǫ holds for each arc (i, j) in the residual network. After that,
ǫ is divided by a factor α > 1 and another phase is performed. When ǫ decreases
below 1/n, then optimal primal-dual solutions are found. This algorithm is one of
the fastest solution methods, however, its practical performance highly depends on
the proper application of several complicated heuristics [6].

We implemented three variants of this method using different operations within
the scaling phases. The standard cost scaling algorithm performs local push and
relabel operations, thus it can be viewed as a generalization of the well-known
push-relabel algorithm for the maximum flow problem. Another variant replaces
the local push operations with augmentations along admissible paths between ex-
cess and deficit nodes. The third approach performs partial augmentations based
on Goldberg’s recent algorithm for the maximum flow problem [7], which attains a
good compromise between the former two methods. As far as we know, our imple-
mentation is the first application of this idea to the minimum cost flow problem.

An Experimental Study of Minimum Cost Flow Algorithms 231

According to our tests, it turned out to be significantly faster than the other two
variants on virtually all problem instances.

3.4. Network Simplex Algorithm

The network simplex algorithm (NS) is the specialized version of the linear pro-
gramming (LP) simplex method directly for the minimum cost flow problem [10].
The LP variables correspond to the arcs of the graph and the LP bases are repre-
sented by spanning trees along with suitable flow values and node potentials. At
each iteration, we attempt to reduce the objective function value by moving from
the current spanning tree solution to another. For this, a non-tree arc violating the
optimality condition is added to the spanning tree, which determines a negative
cycle. This cycle is canceled by augmenting flow along it and one of the saturated
arcs is removed from the tree. This whole operation is called pivot. If no suitable
incomming arc can be selected, then the flow is optimal.

The efficient implementation of the network simplex method requires a complex
data structure for storing and updating the spanning trees. We applied the XTI
method for this purpose, which is one of the most efficient schemes [2]. Another
crucial part of the implementation is the strategy of selecting the entering arcs
for the pivots. We implemented five different methods: first eligible, best eligible,
candidate list, altering list, and block search. The latter two strategies performed
the best in our benchmark tests, but block search turned out to be more robust,
so it was selected to be the default pivot rule for NS.

4. Experimental Results

4.1. Test Framework

The benchmark tests of the implemented algorithms were performed on an AMD
Opteron Dual Core 2.2 GHz machine with 16GB RAM and 1MB cache, running
openSUSE 10.1 operating system. The codes were compiled with GCC 4.1 using -
O3 optimization flag. Our test instances include both random and real-life networks
containing up to millions of nodes and arcs. The random problems were created
using well-known standard generators NETGEN and GOTO. Since the density of
the network is an essential parameter, we studied both sparse networks, for which
m = 8n and relatively dense networks, for which m is about n

√
n. The real-world

instances are based on segmentation problems of medical image processing, which
are available at http://vision.csd.uwo.ca/.

4.2. Benchmark Results

Table 1 and Figure 1 compare our implementations on problem instances generated
with NETGEN. The cycle-canceling algorithms (SCC, MMCC, CAT) are clearly

232 Z. Király, P. Kovács

the slowest methods, but CAT is much faster than SCC and MMCC. The augment-
ing path methods are considerably faster, CAS typically outperforms the basic SSP
algorithm. Cost scaling (COS) and network simplex (NS) are obviously the most
efficient solution methods. For large sparse graphs, COS is significantly faster than
NS, otherwise NS typically performed better.

n m/n SCC MMCC CAT SSP CAS COS NS

212 8 55.504s 407.65s 2.0093s 2.1059s 0.5982s 0.1471s 0.0451s
216 8 − − 240.51s 130.42s 87.742s 5.6940s 5.3486s
220 8 − − − − − 150.11s 665.98s
212 64 1185.5s 6855.7s 20.252s 8.3316s 8.7219s 0.5906s 0.2209s
216 256 − − − − − 114.10s 58.127s

Table 1: Comparison of our implementations on NETGEN in-
stances

Sparse networks (m = 8n)

0.001s

0.01s

0.1s

1s

10s

100s

1000s

10000s

100000s

 1000 10000 100000 1000000

R
un

ni
ng

 ti
m

es

Number of nodes

CAT
CAS
COS-PAR
NS-Block Search

Dense networks (m ≈ n
√

n)

0.001s

0.01s

0.1s

1s

10s

100s

1000s

10000s

100000s

 1000 10000 100000

R
un

ni
ng

 ti
m

es

Number of nodes

CAT
CAS
COS-PAR
NS-Block Search

Figure 1: Comparison of our implementations on NETGEN in-
stances

The following tables and charts compare our fastest algorithms (COS and NS)
to efficient public solvers for the minimum cost flow problem. One of these solvers is
the min_cost_flow method of the LEDA library [11], which implements a cost
scaling algorithm. The other three solvers are available under the MCFClass project
[5]: (1) CS2, which is based on the cost scaling version 3.7 C code of Goldberg and
Cherkassky [6], (2) RelaxIV, which is based on the original FORTRAN code of
Bertsekas and Tseng [3], (3) MCF, which is based on the version 1.1 C code of
Löbel [13].

Tables 2 and 3 contain benchmark results on random networks generated with
NETGEN and GOTO, respectively. GOTO is known to create much harder in-
stances than NETGEN, which is also verified by our results. Therefore, the studied
GOTO networks were smaller than the NETGEN graphs.

COS, CS2 and LEDA are three different implementations of the cost scaling
algorithm. The fastest one is CS2, which is developed by the author of this method.
Our COS implementation usually turned out to be faster than LEDA (except for
the sparse GOTO networks). Moreover, LEDA failed on the largest sparse network

An Experimental Study of Minimum Cost Flow Algorithms 233

with cost overflow error. MCF is a network simplex implementation, but it proved
to be much slower than the NS algorithm of LEMON. RelaxIV is an interesting
relaxation algorithm. It was obviously the fastest on the NETGEN networks,
however it performs rather poorly on harder instances, such as GOTO networks.

Figure 2 shows the benchmark results for the real-world networks. LEDA failed
to solve these huge problems, but the other solvers and our algorithms could solve
them. COS and CS2 turned out to be the most efficient implementations on these
networks. NS also performed rather good, but MCF and RelaxIV were much slower.

LEMON Other solvers
n m/n COS NS LEDA CS2 MCF RelaxIV

212 8 0.1471s 0.0451s 0.1539s 0.1094s 0.1254s 0.0613s
216 8 5.6940s 5.3486s 9.0663s 4.8089s 15.800s 5.0782s
220 8 150.11s 665.98s error 87.344s 1916.3s 77.833s
212 64 0.8378s 0.2209s 1.7748s 0.5906s 0.7098s 0.6887s
216 256 82.166s 58.127s 464.09s 114.10s 594.96s 41.502s

Table 2: Comparison of our implementations and other solvers on
NETGEN instances

LEMON Other solvers
n m/n COS NS LEDA CS2 MCF RelaxIV

212 8 1.4900s 0.3109s 0.6177s 1.5007s 4.8567s 21.273s
214 8 15.134s 6.0875s 5.3180s 6.7113s 232.63s 501.95s
216 8 192.17s 182.08s 91.291s 56.276s − −
212 64 10.031s 2.3758s 10.711s 5.8248s 43.155s 514.53s
214 128 117.37s 136.99s 295.89s 82.825s 2142.1s −

Table 3: Comparison of our implementations and other solvers on
GOTO instances

5. Conclusions

We implemented various algorithms for the minimum cost flow problem, they are
available as part of the LEMON open source C++ optimization library. The net-
work simplex and the cost scaling algorithms proved to be the fastest solution
methods. The cost scaling implementation was usually faster on large and rela-
tively sparse networks. Our implementations turned out to be competitive or often
faster than widely used efficient solvers.

References

[1] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network Flows: Theory, Algorithms,
and Applications. Prentice-Hall, Inc., 1993.

234 Z. Király, P. Kovács

1s

10s

100s

1000s

10000s

100000s

 200000 400000 800000 1600000 3200000

R
un

ni
ng

 ti
m

es

Number of nodes

LEMON COS
LEMON NS
CS2
MCF
RelaxIV

Figure 2: Comparison of our implementations and other solvers on
real-life networks

[2] R. Barr, F. Glover, and D. Klingman. Enhancements to spanning tree labelling
procedures for network optimization. INFOR, 17(1):16–34, 1979.

[3] D. P. Bertsekas and P. Tseng. RELAX-IV: A faster version of the relax code for solv-
ing minimum cost flow problems. Technical Report LIDS-P-2276, Dept. of Electrical
Engineering and Computer Science, M.I.T., Cambridge, MA, 1994.

[4] J. Edmonds and R. M. Karp. Theoretical improvements in algorithmic efficiency for
network flow problems. J. ACM, 19(2):248–264, 1972.

[5] A. Frangioni and A. Manca. A computational study of cost reoptimization for min-
cost flow problems. INFORMS J. On Computing, 18(1):61–70, 2006.

[6] A. V. Goldberg. An efficient implementation of a scaling minimum-cost flow algo-
rithm. J. Algorithms, 22(1):1–29, 1997.

[7] A. V. Goldberg. The partial augment-relabel algorithm for the maximum flow prob-
lem. 16th Annual European Symp. on Algorithms, pages 466–477, 2008.

[8] A. V. Goldberg and R. E. Tarjan. Finding minimum-cost circulations by canceling
negative cycles. J. ACM, 36(4):873–886, 1989.

[9] A. V. Goldberg and R. E. Tarjan. Finding minimum-cost circulations by successive
approximation. Mathematics of Op. Res., 15(3):430–466, 1990.

[10] D. J. Kelly and G. M. O’Neill. The minimum cost flow problem and the network
simplex method. Master’s thesis, University College, Dublin, 1991.

[11] LEDA – Library of Efficient Data Types and Algorithms. http://www.
algorithmic-solutions.com/, 2010.

[12] LEMON – Library for Efficient Modeling and Optimization in Networks. http:
//lemon.cs.elte.hu/, 2010.

[13] A. Löbel. Solving large-scale real-world minimum-cost flow problems by a network
simplex method. Technical Report SC 96-7, Zuse Institute Berlin (ZIB), Berlin,
Germany, 1996.

An Experimental Study of Minimum Cost Flow Algorithms 235

Zoltán Király, Péter Kovács
Pázmány Péter sétány 1/C, H-1117 Budapest

