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Abstract

Dynamic programming (DP) is a general optimization technique, which
can be applied to numerous decision problems that typically require a se-
quence of decisions to be made. The most common approach taken today
for solving real-world DP problems is to start a specialized software devel-
opment project for every problem in particular. Even taking into account
that a module-oriented development philosophy allows considerable reuse of
components, this is still a rather expensive approach. Consequently, a gen-
eral software tool that automatically solves DP problems (getting as input
the functional equation) should be able to save considerable software devel-
opment costs.

Lew and Mauch [1, 2] introduced Bellman nets (special high level col-
ored Petri nets) as modeling tools for discrete DP problems, and Mauch
[3] developed the solver software DP2PN2solver that builds Bellman nets as
intermediate representation of the functional equation. On the other hand
Kátai [4, 5] introduced d-graphs for modeling DP problems, and Kátai and
Csíki [6] developed a d-graph oriented DP solver software tool. In this paper
we compare the two methods and software tools.

1. Introduction

Dynamic programming (DP) is a general optimization technique, which can be
applied to numerous decision problems that typically require a sequence of deci-
sions to be made. The most common approach taken today for solving real-world
DP problems is to start a specialized software development project for every prob-
lem in particular. Even taking into account that a module-oriented development
philosophy allows considerable reuse of components, this is still a rather expensive
approach. Consequently, a general software tool that automatically solves DP prob-
lems (getting as input the functional equation) should be able to save considerable
software development costs.
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So far, software tools that would allow the user to conveniently state arbitrary
DP problems using the terminology and techniques that have been established in
the past in the field of DP have not been developed. One of the difficulties in
designing a DP solver system is to come up with a specification language that is
on the one hand general enough to capture the majority of DP problems arising
in reality, and on the other hand structured enough to be parsed efficiently. For
linear programming (LP) problems, it is very easy to achieve both of these goals,
for DP problems however it is much harder to satisfy these conflicting goals. An
intermediate problem representation in the form of a Petri net (PN) or d-graph
model turns out to be a useful device for this purpose. The mentioned models
are only applicable to “discrete” optimization problems for which a DP functional
equation with a ?nite number of states and decisions can be obtained.

Mauch proposed a specialized PN model that uses the standard semantics of
place/transition nets, a low-level PN class [3], whereas Lew’s model relies on high-
level PNs with numerically-colored tokens, called Bellman Nets [1]. D-graphs as
modeling tools for DP problems were introduced by Katai in [4]. Mauch [3] devel-
oped the solver software DP2PN2solver that builds Bellman nets as intermediate
representation of the functional equation, and Kátai and Csíki [6] developed a d-
graph oriented DP solver software tool. In this paper we compare the two methods
and software tools.

2. Modeling DP problems

As we mentioned above, DP is often used to solve optimizing problems. The
problem usually consists of a target function, which has to be optimized through
an optimal sequence of decisions. DP is built on the principle of optimality: the
optimal solution is built by optimal sub-solutions. This principle is expressed by
a recursive formula (functional equation), which describes mathematically the way
the more and more complex optimal sub-solutions are built from the simpler ones.
Obviously, this is a formula where the way of the optimal (minimum or maximum)
decision making has been built in. Once the functional equation is established, the
problem can be considered mathematically solved.

The programming part of the problem solving process is built on another princi-
ple of DP, which is: the optimal values of the target function concerning the already
solved sub-problems are stored (often in an array). According to the principle of
the optimality we are interested only in the optimal solutions of the sub-problems.
This technique, often called memoization or result catching, makes it possible to
avoid the repeating computation for overlapped sub-problems, which are also char-
acteristic for DP problems. The core of the computer program that implements
the DP algorithm consists in computing the corresponding elements of the array
in bottom-up way according to the strategy given by the recursive formula. An ef-
ficient strategy solves each sub-problem before its optimum value is needed by any
other sub-problem. The complexity of this programming task varies from problem
to problem. It is often nontrivial to write a code that evaluates the sub-problems



Modeling Dynamic Programming Problems: Petri Nets Versus d-graphs 219

in the most efficient order.
Suppose a discrete optimization problem can be solved by an integer dynamic

programming equation of the form

f (s) = min
a

{
d (a) +

Ka∑

k=1

(
f(s(k))

) }
,

with nonnegative integral base cases values f(s0) given. Here s denotes a state, f
is the minimization functional, a is a decision that can be made in state s, d is the
decision cost function, and s(k) are the Ka next states, and s0 are base case (initial
condition) states.

2.1. Construction of the PN Model
Familiarity with basic Petri net terminology is assumed in this paper. The PN
model corresponding to the above DP problem has

1. a state place ps for each state s, that has, except for the base case state
places, a unique minimization transition in its preset,

2. a min-in place pm for each decision a, that has a minimization transition in
its postset, and whose initial marking equals d(a),

3. a minimization transition associated with each state place ps, except for the
base case state places, that has in its preset the min-in places for each decision
a,

4. a copy transition that transfers tokens from the state place associated with
s(k) to those min-in places whose decision a involves the summand f(s(k)).

Transitions serve two different purposes in the model:

• Processing Transitions: Transitions can be considered as processing elements.
E.g. there are minimization transitions, addition transitions, multiplication
transitions, etc. In other words there are transitions representing arbitrary
functions f.

• Copy Transitions: Another purpose of transitions is to make the results of
solved subproblems available to the super-problems requesting these results.
Each of these special “copy transitions” distributes a result from one “state
place” to multiple “min-in places”.

There are two types of places in the PN model:

• State Places: Such a place represents a state encountered during the solution
process of a DP problem. Except for the base case state places, state places
are the output places for minimization transitions.
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• Min-in Places: These are the input places for minimization transitions. They
are also the output places for copy transitions.

The role of markings in the PN model:

• Marking of State Places: Let ps be a state place. Immediately after all
minimization transition in its preset •ps have fired, but just before firing any
of the copy transitions in its postset ps•, the marking of a state place ps

representing state s contains f(s) tokens, representing the optimal value of
the subproblem associated with state s. Base case state places are initially
marked with an appropriate number of tokens as specified in the base cases of
the DP functional equation. That is a base case state place associated with a
base case state s0 is initially marked with f(s0) tokens. All other state places
are initially marked with no tokens.

• Marking of Min-in Places: Let pm be a min-in place. After all transitions in
its preset •pm have fired, but just before firing any transitions in its postset
pm•, the marking of these places corresponds to the values to be minimized
by a minimization transition. Min-in places are initially marked with d(a)
tokens.

2.2. The Intermediate Bellman Net Representation

A Bellman Net is a special high-level colored Petri net with the following properties.

1. The color type is numerical in nature, tokens are real numbers. In addition,
single black tokens are used to initialize enabling places, which are technical-
ities that prevent transitions from firing more than once.

2. A place contains at most one token at any given time.

3. The postset of a transition contains exactly one designated output place,
which contains the result of the computational operation performed by the
transition.

4. There are several different types of transitions, among them M-transitions
and E-transitions. An M-transition performs a minimization or maximization
operation using the tokens of the places in its preset as operands and puts
the result into its designated output place. An E-transition evaluates a basic
arithmetic expression (involving operators like addition or multiplication)
using fixed constants and tokens of the places in its preset as operands and
puts the result into its designated output place.

5. There are self-loops between an E-transition and all places in its preset.
Their purpose is to conserve operands serving as input for more than one
E-transition.
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A numerical token as the marking of a place in a Bellman net can be interpreted
as an intermediate value that is computed in the course of calculating the solution
of a corresponding DP problem instance.

While the expressional power of both (low/high level PN) approaches seems to
be equivalent (no proof yet) it is easier to transform Bellman Nets to executable
computer code. However, the low level PN model is easier to examine with respect
to consistency, and other net theoretic issues.

2.3. DP and d-graphs

Considering the recursive formula (functional equation) as an implicit description
of a d-graph, DP problems can be interpreted as optimal path/tree problems in
the associated d-graph.

Definition 2.1. The connected weighted bi-parted digraph Gd (V, E, C) is a d-
graph if:

• V = Vp � Vd and E = Ep � Ed

• Vp - the set of the p-nodes.

• Vd - the set of the d-nodes

• All in/out neighbours of the p-nodes (excepting the source/sink nodes) are
d-nodes. Each d-node has exactly one p-out-neighbour. Each d-node has at
least one p-in-neighbour.

• Ep - the set of p-arcs. (from d-nodes to p-nodes)

• Ed - the set of d-arcs. (from p-nodes to d-nodes)

• The C: Ep → R function associates a cost to every p-arc. We consider the
d-arcs of zero cost.

For further definitions (d-subgraph, d-tree, d-subtree, spanning d-subtree, optimal
spanning d-subtree, etc.) see [4].

Modeling DP problems with d-graphs:

• The p-nodes represent the subproblems. The source-nodes represent the
trivial subproblems (associated with the base cases) whereas the sink-node
(or nodes) represent the original problem (problem-set).

• f(s) is the weight of the p-node associated with state s(ps), and the number
of its d-in-neighbours is equal with the number of choices a at the decision
has to be made in state s. The p-in-arcs of ps are weighted with cost-values
d(a), and its d-in-neighbours with the sums (according to the above example



222 Z. Kátai, P. I. Fülöp

we have sum-function, but the nature of this function depends on the DP
problem to be solved)

Ka∑

k=1

f(s(k))

• The d-in-neighbour corresponding to decision a has Ka p-in-neighbours rep-
resenting the subproblems associated with states s(k) (k = 1, . . . , Ka).

• The optimal solution (the sequence of optimal decision) is represented by the
optimal spanning d-subtree of the associated d-graph. The weights of the
p-nodes correspond to the optimal objective function values.

The following three cases can be distinguished [5]:

1. The attached d-graph is cycle free. In this case the most efficient optimal
path/tree algorithm is based on the topological order of the nodes.

2. The graph contains cycles, but there are no negative weight arcs. For this
case the best choice is a d-graph variant of Dijkstra’s algorithm.

3. The graph has negative arcs, but it has no negative weight cycles. This
optimal path/tree problem is solved by a d-graph variant of Bellman-Ford
algorithm.

3. DP solver software tools

3.1. Solver software DP2PN2solver

Mauch describes in [3] the solver software DP2PN2solver that builds Bellman nets
as intermediate representation of the functional equation. The following are the
steps that need to be performed to solve a DP problem instance with DP2PN2solver
(only step 1 is performed by the human DP modeler whereas all other steps are
automatically performed by the software tool).

1. It models the real-world problem and creates the DP specification-file in the
gDPS language.

2. The appropriate DP2PN module produces the intermediate Bellman net rep-
resentation.

3. One of the PN2Solver modules produces runnable Java code, or a spreadsheet
or another form of executable solver code, which is capable of solving the
problem instance.

4. It runs the resulting executable solver code and outputs the solution of the
problem instance.
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3.2. DP solver software based on intermediate d-graph rep-
resentation

The core idea of the algorithm behind the software is that we represent explicitly
the graph described implicitly by the recursive formula. There are two strategies
to transpose the functional equation into an algorithm: the direct method (direct-
conversion of the functional equation into an iterative/recursive procedure) and the
successive approximation methods (after an initial approximation, the array-cells
that are going to store the optimum values are successively updated – improved –
either by the functional equation itself or by an equation related to it) [7].

Another classification of the DP strategies is based on the way the optimum
values of the sub-problems are computed. The so-called pull-approach computes
directly (not by an updating process) the optimum value of the current node on the
basis of the already computed optimum values of its immediate predecessors. This
approach is an immediate application of the functional equation, and can be used
only for the acyclic graphs [7]. The key idea in the case of the push-approach is
to propagate any improvement that has been made in the current node to its out-
neighbors. The algorithm ends when any other improvements cannot be performed
[7]. All the three optimal path/tree algorithms integrated in the software apply
successive approximation and push-approach.

The algorithm is:
(Only step 1 is performed by the human DP modeler whereas all other steps are
automatically performed by the software tool)
1. Input:
• The recursive formula is introduced.
• The index-limits (along every dimension) of the array are introduced.
• The indexes of the cell that represents the original problem are introduced.

2. The recursive formula is analyzed:
• The software asks for the input data.
• The d-graph is built.

3. The type of the d-graph is determined. (A DFS algorithm tests if the d-graph
is acyclic or not, has negative arcs or not, and whether it contains negative cycles
or not.)
4. The proper optimal path/tree algorithm is applied.
5. The solution (the optimum value corresponding to the original problem, and
the cell-indexes along the optimal path/tree) is printed.

4. Petri Nets versus d-graphs: comparative analysis

1. Both methods apply intermediate representation in order to hide the variety
of DP problems.

2. Both methods move the DP problem to be solved to a well research area: Petri
nets or graph theory (optimal path/tree algorithms). While DP2PN2solver
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integrates standard Petri-algorithms, the optimal path/tree algorithms had
to be adapted to d-graphs.

3. Both Petri nets and d-graphs are specialized bi-parted directed graphs.

4. Because of their illustrability both modeling methods are valuable didactic
tools in teaching-learning process of dynamic programming.

5. Since d-graphs were explicitly developed as modeling tools for DP problems
the attached d-graph is more concise then the corresponding Petri net repre-
sentation (the roles of M/E transitions are integrated in the weight-functions
of the p/d -nodes)

• Mauch states: in case of problems when after each decision exactly one
successor state needs to be evaluated a weighted directed graph repre-
sentation (states are nodes and edge weights represent the cost of a deci-
sion) would be sufficient; when after each decision two or more successor
states need to be evaluated a weighted directed graph representation is
no longer sufficient. Introducing d-graphs Katai solves this impediment
without moving the problem to the field of Petri nets.

6. The use of DP2PN2solver presumes to learn the gDPS language (this is a
general source language that can describe a variety of DP problems; it offers
the flexibility needed for the various types of DP problems that arise in real-
ity). On the other hand the “d-graph software tool” uses as input format for
the functional equation a more traditional form that is closer to its mathe-
matical formulation. (The modeling power of the two input module has not
been compared yet)

7. There are DP problems with “cyclic functional equation” (the chain of recur-
sive dependences of the functional equation is cyclic). Accordingly, Mauch
states that circularity is undesirable, if the PN represents a DP problem in-
stance, because it can cause the DP solver to loop infinitely. Despite of this
fact they managed to model with gDPS and solve by DP2PN2Solver the short-
est path problem in cyclic graphs. Since the d-graph variants of Dijkstra and
Bellman-Ford algorithms work in cyclic d-graphs too, the d-graph oriented
software tool solves automatically the “circularity problem”.

5. Conclusions

1. Developed as modeling tools for DP problems, the d-graph model moves DP
problems through a concise intermediate representation to the field of graph
theory, allowing optimal path/tree algorithms to find the optimal solutions.

2. The DP solver software efficiently implements the d-graph model to solve DP
problems, even those with a “cyclic functional equation”.
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3. The high illustrative capability makes from the d-graph based DP solver
software a useful didactic tool in teaching dynamic programming.
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