
Proceedings of the 8th International Conference on Applied Informatics
Eger, Hungary, January 27–30, 2010. Vol. 2. pp. 191–197.

On a Multidimensional Semi-on-line Bin
Packing Problem*

János Balogha, József Békésia, Gábor Galambosa,
Gerhard Reineltb

aDepartment of Informatics’ Applications, Gyula Juhász Faculty of Education,
University of Szeged

bInstitute of Computer Science, University of Heidelberg

Abstract

In the paper we present the first lower bounds for the asymptotic compet-
itive ratio of multidimensional semi-on-line bin packing. We give the lower
bound 1.3871. . . for the case of multidimensional on-line bin packing prob-
lem where repacking is allowed with the arriving of a new element, but the
number of such repackable elements are bounded by a finite constant per a
new arriving element. The result is valid in every d-dimension. Our results
improve the lower bound of 4/3 by Coppersmith and Raghavan given in [4]
for the on-line hypercube packing problem.

Keywords: semi-on-line bin packing problems, multidimensional bin packing,
cube packing, worst case analysis

MSC: 68Q25, 68W25, 68W27

1. Introduction

In the classical one–dimensional bin-packing problem we are given a list L =
{x1, x2, . . . , xn} of n elements with size si, where 0 < si ≤ 1. We need to pack
the items into a minimum number of unit-capacity bins so that the sum of the
sizes in each bin does not exceed 1. It is well-known that finding an optimal pack-
ing is NP-hard [8]. Consequently, large number of research have been published
which look for polynomial time algorithms with an acceptable approximative be-
havior. The algorithms have been classified into different classes: The on-line bin
packing algorithms put items into bins as they appear without knowing anything

*The research was supported by the Hungarian National Research Fund (projects T 048377
and T 046822) an by the MÖB-DAAD Hungarian-German Researcher Exchange Program (project
No. 21).

191

192 J. Balogh, J. Békési, G. Galambos, G. Reinelt

about the subsequent elements (neither the sizes nor the number of the elements).
Off-line algorithms can use more information: most of them examine the entire list
before they apply their strategy to pack the items. The so called semi-on-line al-
gorithms [3] are between the on-line and off-line ones. For such algorithms at least
one of the following operations is allowed: repacking of some items [5, 6, 7, 11],
lookahead of the next several elements [9], or some kind of preordering. If the
lookahead is valid for certain sublists – without any constraint on the number of
elements – then we speak about batched algorithm. In case of dynamic bin packing
algorithms in each step not only the insertion of the arrived elements is allowed,
but in any step one element can be deleted as well. We speak about fully dynamic
bin packing algorithm if repacking is also allowed.

The efficiency of different algorithms is generally measured by two different
methods: the investigation of the worst-case behavior, or – assuming some prob-
ability distribution of the elements – a probability analysis. In this paper we will
concentrate on the asymptotic competitive ratio which can be defined as follows:
denote A(L) the number of bins used by the algorithm A while packing the elements
of a list L, and let L∗ the number of bins in an optimal packing. If

RA(k) := max
{

A(L)
k
|L∗ = k

}
(1.1)

denotes the maximum ratio of A(L)/L∗ for any list L with L∗ = k, then the
asymptotic performance ratio (APR) RA of the algorithm A is defined as

RA := lim supk→∞RA(k). (1.2)

The best known lower bound for the APR of any on-line bin packing algorithm A
is 1.54014 (given by Van Vliet [14]), while for the current best algorithm has an
APR of 1.58889 (Seiden, [13]).

Semi-on-line bin packing algorithms have been studied by Gambosi et al. [7].
While having packed the elements they have not restricted the number of repackable
elements by a finite constant. They gave an O(n) time algorithm with an APR of
1.5 and an O(n log n) time algorithm with an APR of 4

3 . The latter algorithm was
improved by Ivkovič and Lloyd [12] who constructed an algorithm with APR of 5

4 .
The first lower bound for this problem is proved by Ivkovič and Lloyd. This

bound is 4
3 . In their lower bound construction the repacking of a constant number

of items is allowed after the arrival of each a new item. The same 4
3 lower bound

has been proved for fully dynamic bin packing with restricted repacking. Although
the 4

3 lower bound was constructed for fully dynamic bin packing algorithms, the
model can be easily applied for those of semi-on-line bin-packing algorithms where
repacking is allowed.

Batched bin packing algorithms were studied by Gutin et al. [10]. They investi-
gated deeply only the case when we have only two batches, and they gave a lower
bound 1.3871 . . . for the batched algorithms for this case.

In this paper we give the first lower bound for that of the variant of the multidi-
mensional on-line bin packing problem when in each step the repacking of constant

On a Multidimensional Semi-on-line Bin Packing Problem 193

number of elements is allowed. We focus on the multidimensional case of this prob-
lem, but the same construction can be used for deriving the same lower bound for
the similar version of the fully dynamic bin packing problem

Our bound is valid for the classical on-line hypercube packing problem, in any
d-dimension. Furthermore, our lower bound improves the lower bound of 4/3 given
by Coppersimth and Raghavan [4]. For the cases d ≥ 4 it was the best known lower
bound for the problem.

2. Preliminaries: Constructing the lower bounds by
a linear and a nonlinear optimization problem

The following theorem is proved in [1]:

Theorem 2.1. [1] Let k ≥ 1 and c ≥ 1 be arbitrary integers and x1, x2, . . . , xk,
(1
2 ≤ x1 < x2 < · · · < xk < 1) be fixed real numbers. Let yi = 1− xi, (i = 1, . . . , k)

and yk+1 = 0. Then the solution of the following linear programming problem is a
lower bound for the APR of an arbitrary semi-on-line bin packing algorithm with
c-repacking:

min b, (2.1)

subject to

b ≥ 1 + yi + 2yi

i−1∑

j=1

zj

(
1
yj
− 1
)
−

k∑

j=i

zj

, (i = 1, . . . , k), (2.2)

b ≥ 1 +
k∑

j=1

2zj

(
1
yj
− 1
)

, (2.3)

zi ≥ 0, (i = 1, . . . , k), (2.4)
k∑

j=1

zj <
1
2
. (2.5)

Note that the expression c-repacking means that a given number c of elements
can be repacked in each step.

Although we omit the proof of this theorem, we introduce a list-construction
as the basic idea behind the proof: consider a series of lists L1, ..., Lk, where Lj

(j = 1, . . . , k) contains
⌈

n
2yj

⌉
items of size xj + εj , where εj := ε⌈

n
2yj

⌉ , and ε <

minj=1,...,k {yj − yj+1} is an arbitrary positive number. L0 is defined as a list of M

items of size a, where a < εk⌈
n

yk

⌉
c
and M :=

⌊
n
2−ε

a

⌋
. It can be seen, that size(Lj),

i.e. the sum of the elements in Lj is n
2 + ε, while size(L0) is n

2 − ε.

194 J. Balogh, J. Békési, G. Galambos, G. Reinelt

For an arbitrary list Lj, 0 ≤ j ≤ k, we denote the sum of the sizes of all elements
in Lj by size(Lj). It is easy to prove that size(L0) ≤ n

2 − ε. From the definition
of the lists Lj, it follows that — while packing their elements — each element is
placed into separate bin, and the sum of the free space in the bins is at least n

2 − ε.
The key idea of the construction is the following: if a is so small, then consid-

ering the list-concatenations L0L1, L0L2, . . . , L0Lk, the total size of the repackable
small elements during the packing of the second list Lj (in

⌈
n

2yj

⌉
steps) is less than

εj (j = 1. . . . , k).
This way we “almost switch off" the role of the repacking. In the sequel the

level(B) denotes the cumulative size of the items have been packed into B. It is
directly follows from the size of any “big" element, that such a big element can be
packed only in a bin, which level is at most yj − εj. If zin denotes the cumulative
size of the items that are packed in yi-type bins, – we call a bin B yi-type bin if
size(B) ∈ (yi+1, yi] – then because of the above reasoning a bin containing a big
element had level of at most yj after the packing of L0.

We can now estimate (1.2) for L0 and for L0Lj , j = 1, . . . , k. Namely, inequality
(2.2) of Theorem 2.1 comes from the estimation of (1.2) for the list concatenations
L0Lj , ∀j, while inequality (2.3) comes from the estimation of (1.2) for the case list
L0 (i.e. for the case when there is no list appearing after L0).

In [2] it was shown that the solution of (3) subject to (4)-(7) is a lower bound
not only for the c-repacking semi-on-line bin packing problem, but the c-repacking
fully dynamic bin packing problem and for the 2-batched bin packing problem as
well (obtaining the same lower bound).

3. Multidimensional lower bound

The next statement shows that the optimum of (2.1)–(2.5) is valid in any dimension.

Lemma 3.1. Let c be an arbitrary positive integer and 0 < yk < . . . < y1 ≤ 1
2 real

numbers. The optimum of (2.1)–(2.5) is a lower bound for all c-repacking SOL,
c-repacking FDP, and 2-BBP problems in any d-dimension (d ≥ 1, integer).

Proof. We generalize the 1-dimensional construction to a d-dimensional cube pack-
ing problem.

Firstly, we will choose the values ε and εj (j = 1, . . . , k) as above. For a the
inequalities a < εk⌈

n
yk

⌉
c
and a ≤ (ε⌈

n
2yk

⌉
d·(2d−1)

)d must hold. Since we will construct

d-dimensional cubes with matching volumes, so the lengths of the sides of the
cubes in the lists L0, L1, . . . , Lk are considered as d

√
a and d

√
x1 + ε1, . . . , d

√
xk + εk,

respectively. Here xi = 1 − yi, i = 1 . . . , k. The variables zj (j = 1, . . . , k)
correspond to the occupied volumes in the d-dimensional unit cube after having
packed the elements of L0. Following the train of thought has been used in proof
of the one-dimensional case in [1], we show that the d-dimensional modification of
the construction leads to the same problem defined in (2.1)–(2.5).

On a Multidimensional Semi-on-line Bin Packing Problem 195

It is easy to see that the lower bounds given in [1] for A(L0) and A(L0Li),
i ∈ {1, . . . , k}, remain valid for the d-dimensional construction as well. (Notice
that for case one needs to correspond the cumulative volume of the contained
elements to the level of a bin.) So, we get

A (L0) ≥
k∑

j=1

zjn

yj
+ Ma− n

k∑

j=1

zj = Ma + n

k∑

j=1

zj

(
1
yj
− 1
)

, (3.1)

and

A (L0Li) ≥
n

2yi
+ n

i−1∑

j=1

zj

yj
+ Ma− n

k∑

j=1

zj, (i = 1, . . . , k) . (3.2)

Now, we will show that those upper bounds what we proved for OPT(L0) and
OPT(L0Li) in the one-dimensional case are also true for the d-dimensional con-
struction.

First, we will estimate OPT(L0). We remind the reader that the list L0 contains
very small elements with equal sizes. (We call them as small-elements.) To produce
a feasible packing for these type of elements it is enough to use a simple level
oriented next-fit type strategy (we denote it by LNF): we pack the small elements
level by level into bins packing at each level so many elements as it possible. If
there is no place in the actual bin for new element we declare it full and open a
new, empty bin. In the full bins the packed elements form a d-dimensional cube
with side 1 − d

√
a. So, the wasted space in each bin – except at most the last one

– is d · d
√

a, and so

OPT(L0) ≤
Ma

1− a′
+ 1 ≤

n
2 − ε

1− a′
+ 1 ≤

n
2

1− a′
+ 1. (3.3)

Inequalities (3.1) and (3.3) yield the condition (2.3) here, as well.

To get an upper bound for OPT(L0Li) we will create a feasible packing. First
we pack the elements of Li, and thereafter the elements of L0. In both cases we
apply the next-fit strategy, and we call this algorithm as Double Next-Fit (DNF).

Step 1. Pack the elements of Li into bins, each in one. (We call these bins as
big-bins.)

Step 2. Using the LNF rule fill up the empty spaces in big-bins, bin by bin (and
level by level) with the elements of L0. If the algorithm run out from the
big-bins, open a new, empty bin, and packs the remained small elements by
the LNF rule.

We remark that in the last step while the algorithm packs small-elements in
the actual bin it puts them not only on the top of the big-element but it fill up the
empty spaces at its sides as well. Let us denote a bin by Bi if it contains element
from Li. It is easy to check then after Step 1 a Bi bin has empty volume yi − εi,
while the empty volume after the Step 2 is a” = d · (2d − 1) d

√
a.

196 J. Balogh, J. Békési, G. Galambos, G. Reinelt

Let Vs(Bi) denote the cumulative volume of small-elements in Bi after Step 2.
Then

Vs(Bi) ≥
⌈

n

2yi

⌉
(yi − εi − a”) ≥ n

2
−
⌈

n

2yi

⌉
εi −

⌈
n

2yi

⌉
a” ≥Ma− 2ε.

If N(Bs) denotes the number of those bins which contain only small-elements
then it follows that N(Bs) ≤ 1. So, we can give an estimation for the minimum
number of bins:

OPT(L0Li) ≤
⌈

n

2yi

⌉
+ N(Bs) ≤

n

2yi
+ N(Bs) + 1 ≤ n

2yi
+ 2 (3.4)

If we combine (3.2) and (3.4) then we get the inequalities (2.2), and this yields
the desired result. �

We note that the statement of Theorem 2 is valid for the c-repacking fully
dynamic bin packing problem and for the 2-batched bin packing problem as well.

4. Summary

The paper gave bounds for multidimensional semi-on-line bin packing problems.
The lower bound construction is given by hypercubes, and so valid for the classical
d-dimensional on-line hypercube packing problem, even if repacking is not allowed.
The bound improves the lower bound of 4/3 ([4]) which was the best known lower
bound for cases d ≥ 4.

References

[1] Balogh, J., Békési, J., Galambos, G., Reinelt, G., Lower Bound for Bin
Packing Problem with Restricted Repacking, SIAM Journal on Computing Vol. 38
(2008), 398–410.

[2] Balogh, J., Békési, J., Galambos, G., Markót, M.Cs., Improved lower bounds
for semi-on-line bin packing problems, Computing Vol. 84 (2009), 139–148.

[3] Coffman, E.G., Galambos, G., Martello, S., Vigo, D., Bin Packing Ap-
proximation Algorithms: Combinatorial Analysis, In: Handbook of Combinatorial
Optimization (Eds. Du, D.-Z. and Pardalos, P.M.), 151–208, Kluwer Academic Pub-
lishers (1999).

[4] Coppersmith, D., Raghavan, P., Multidimsnional online bin packing algorithms
and orst case analysis, Operations Research Letters, Vol. 8 (1989), 17–20.

[5] Galambos, G., A new heuristic for the classical bin packing problem, Technical
Report 82, Institute fuer Mathematik, Augsburg (1985).

[6] Galambos, G., Woeginger, G.J., Repacking helps in bounded space online bin
packing, Computing Vol. 49 (1993), 329–338.

On a Multidimensional Semi-on-line Bin Packing Problem 197

[7] Gambosi, G., Postiglione, A., Talamo, M., Algorithms for the Relaxed Online
Bin-Packing Model, SIAM Journal on Computing Vol. 30 (2000), 1532–1551.

[8] Garey, M.R., Johnson, D.S., Computers and Intractability (A Guide to the the-
ory of NP-Completeness), W.H. Freeman and Company, San Francisco (1979).

[9] Grove, E.F., Online bin packing with lookahead, SODA (1995), 430–436.

[10] Gutin, G., Jensen, T., Yeo, A., Batched bin packing, Discrete Optimization Vol.
2 (2005), 71–82.

[11] Ivkovič, Z., Lloyd, E.L., A fundamental restriction on fully dynamic maintenance
of bin packing, Information Processing Letters Vol. 59 (1996), 229–232.

[12] Ivkovič, Z., Lloyd, E.L., Fully Dynamic Algorithms for Bin Packing: Being
(Mostly) Myopic Helps, SIAM Journal on Computing Vol. 28 (1998), 574–611.

[13] Seiden, S.S., On the online bin packing problem, Journal of the ACM Vol. 49
(2002), 640–671.

[14] van Vliet, A., An improved lower bound for online bin packing algorithms, Infor-
mation Processing Letters Vol. 43 (1992), 277–284.

János Balogh, József Békési, Gábor Galambos
Department of Informatics’ Applications
Gyula Juhász Faculty of Education
University of Szeged
6725. Szeged, Boldogasszony sgt. 6.
Hungary
e-mail: {balogh, bekesi, galambos}@jgytf.u-szeged.hu

Gerhard Reinelt
Institute of Computer Science
University of Heidelberg
Im Neuenheimer Feld 368
D-69120 Heidelberg
Germany
e-mail: gerhard.reinelt@informatik.uni-heidelberg.de

