
Proceedings of the 8th International Conference on Applied Informatics
Eger, Hungary, January 27–30, 2010. Vol. 2. pp. 157–164.

Untangling Type Inference and Scope
Analysis*

Attila Góbi, Tamás Kozsik, Mónika Mészáros,
Artyom Antyipin, Dorián Batha, Tamás Kiss

aDept. Programming Languages and Compilers
Eötvös Loránd University, Budapest, Hungary

{gobi, kto}@elte.hu, {bonnie, durklard, kacsi3}@inf.elte.hu,
kiss.tamas@csoma.elte.hu

Abstract

Many modern functional programming languages support record types,
parametric polymorphism and type inference. Allowing the same field name
for two different records causes a problem in these languages. Some languages
(e.g. Haskell) do not let you share the same field name among record types.
Other languages (e.g. Clean) take the ambiguity of field names into account
when deciding the type of a record expression. In the latter case the necessary
static analysis performed by the compiler tangles type inference and scope
analysis, because the scope analysis of field names needs type information and
vice versa. This can result in a complex type inference algorithm and hardly
maintainable code in the compiler of a language supporting namespaces and
records.

This paper will provide a method to decouple type inference and scope
analysis by using the Bottom-Up algorithm. This way an iterative algorithm
with consecutive type inference and scope analysis phases can be given.

Keywords: Functional programming, Type inference, Scope analysis, Record
field

MSC: 68N20 (Compilers and interpreters)

1. Introduction

One widely supported feature of functional languages is type inference. Types of
expressions are automatically inferred when it is possible. Records are also widely
supported useful constructs in modern functional languages. However allowing the

*Supported by Morgan Stanley, KMOP-1.1.2-08/1-2008-0002 and OMFB-151/2009 (AT-
10/2008)

157

158 A. Góbi, T. Kozsik, M. Mészáros, A. Antyipin, D. Batha, T. Kiss

same field name for two different records causes a problem in languages using the
type inference of traditional Hindley–Milner style because in this case ambiguity
of identifiers is unmanageable.

For example, the following Clean [6] code fragment will not compile:

:: Point = { x :: Integer , y :: Integer }
:: Pair = { x :: String , y :: String }
setX rec = { rec & x=1 }

The compiler cannot determine the type of the record expression in the right
hand side of setX because of the name clash. Before the type inference begins the
compiler wants to decide the type of this expression based on the names of the
used fields.

Most modern functional languages avoid the shown problem by introducing var-
ious restrictions. In some languages it is not possible to define more records in the
same namespace with one or more fields sharing the same name (e.g. Haskell [3]).
In other languages definition order has influence on how record types are deter-
mined (e.g. OCaml). One solution is to resolve name clashes by adding additional
information when needed (e.g. Clean). This paper presents a better solution. In
the next section a short introduction to the algorithm we modified to reach our
goals is given. Section 3 will introduce our approach to infer record types as an
example of how we can untangle type inference and scope analysis.

2. The Bottom–Up algorithm

In our method we will use the so called Bottom-Up algorithm (described in details
in [2]). In this algorithm a set of constraints on types is generated for an expression.
Despite being generated locally, these constraints can describe global properties.
We are not forced to solve these constraints at generation time as the order in
which constraints are solved is proved to be (almost1) arbitrary [2]. In addition,
no type environment is needed because an assumption set is used to record the
type variables that are assigned to the occurrences of free variables. In contrast
to the type environment, this assumption set can contain multiple and different
assumptions for a single variable. After the generation of the constraints and
assumption set we need to compare the assumption set and the type environment.
The comparison yields additional constraints. The third stage of the algorithm is
the solving of these constraints.

The algorithm works on a small functional language. This small language does
not contain the usual extensions such as recursion, patterns and explicit type defi-
nitions. However these extensions can be added later in a straightforward way and
can be the core of a real functional language. The expressions of the language are
variables, applications, lambda abstractions and literals.

(expression) E := x | E1 E2 | λx→ E | ℓ
1In fact, in the special case we address in this paper, the order is arbitrary.

Untangling Type Inference and Scope Analysis 159

In the original paper a lot of effort is taken to handle the polymorphic nature
of let expressions. In this paper we will not use let expressions, so we left them
out. This modification will simplify the algorithm so it helps to keep the focus on
our approach, and it is simple to put them back if necessary.

Firstly we have to define what a constraint is. A constraint can be in a form
of τ1 ≡ τ2 meaning type τ1 and type τ2 should be unified at a later stage of the
algorithm, or in a form of τ � σ where σ is a type scheme and the constraint notes
that type τ should be a generic instance of σ. A type can be a type variable, a
function type or a type T from the set T of defined (predefined or programmer
defined, e.g. record) types:

τ := a | τ1 → τ2 | T.

For the sake of the examples we assume that T contains at least Integer, Real
and String. A literal is a value with its uniquely identified type (e.g. 1 is Integer,
1.0 is Real, "1" is String).

The assumption set is a multiset of the form x : τ and records that type variable
τ is assigned to identifier x. Algorithm 2.1 is a recursive function on the syntax
tree. The function returns a triple: the assumption set, the constraint set and the
type of the input expression, respectively. The β symbol in the function always
means a fresh type variable. The “type” function is used to determine the type of
a literal.

Algorithm 2.1 (for generating the constraints and assumptions).

Constraints(x) =
(
{x : β}, {}, β

)
, (VAR)

Constraints(ℓ) =
(
{}, {}, type(ℓ)

)
, (LIT)

Constraints(e1e2) =
(
A1 ∪ A2, C1 ∪ C2 ∪ {τ1 ≡ τ2 → β}, β

)
(APP)

where
(A1, C1, τ1) = Constraints(e1)
(A2, C2, τ2) = Constraints(e2)

Constraints(λx→ e) =
(
A\x, C ∪ {τ ′ ≡ β | x : τ ′ ∈ A}, β → τ

)
(ABS)

where
(A, C, τ) = Constraints(e)

For illustration we will show you the constraints and assumptions for the fol-
lowing expression:

λ

b︷︸︸︷
rec →

e︷ ︸︸ ︷
a︷ ︸︸ ︷

set$x
c︷︸︸︷

rec︸ ︷︷ ︸
d

1.0︸︷︷︸
Real︸ ︷︷ ︸

b→e

160 A. Góbi, T. Kozsik, M. Mészáros, A. Antyipin, D. Batha, T. Kiss

You can see the introduced type variables for various subexpressions. Also,
the literal 1.0 has been resolved to its corresponding type. The constraints, the
assumptions and the type of the expression as generated by Algorithm 2.1 are the
following.

C = {b ≡ c, d ≡ Real→ e, a ≡ c→ d} (2.1)
A = {set$x : a} (2.2)
τ = b→ e (2.3)

You can see set$x is recorded as an identifier and has type a. Every expression
has a context and these contexts are described by a type environment. A type
environment is a mapping from defined identifiers to types. We have to create
new constraints describing the correspondence between the type variables in the
assumption set and the types of the identifiers in the type environment.

A � Γ = {τ � σ | x : τ ∈ A, x : σ ∈ Γ} (2.4)

In our example Point is some defined type:

{set$x : a} � {set$x : Point→ Integer→ Point} =
{a � Point→ Integer→ Point}. (2.5)

Extending (2.1) with the above constraint the constraint set becomes:

C = {b ≡ c, d ≡ Real→ e, a ≡ c→ d, a � Point→ Integer→ Point}. (2.6)

Finally we solve (2.6), based on Algorithm 2.2. As we mentioned we can solve
these constraints in arbitrary order. The function mgu(τ1, τ2) returns the most
general unifier of τ1 and τ2, e.g. using Robinson’s algorithm [7].

Algorithm 2.2 (Solve function).

Solve(∅) = [] (2.7)

Solve
(
{τ1 ≡ τ2} ∪ C

)
= Solve(SC) ◦ S

where S = mgu(τ1, τ2) (2.8)

Solve
(
{τ � σ} ∪ C

)
= Solve

(
τ ≡ instantiate(σ) ∪ C

)
(2.9)

So the solution of the constraints (2.6) is:

S = [e/Point, c/Point, b/Point,

a/Point→ Real→ Point, d/Real→ Point], (2.10)

and the inferred type of our expression is given by applying the solution to (2.3):

S(b→ e) = Point→ Point (2.11)

Untangling Type Inference and Scope Analysis 161

3. Our approach

To support record types we shall introduce functions handling record fields, namely
two implicit functions for each field: one to query the value of the field and one to
change the value. Changing the value of a field means creating a new record from
the old one with the updated field value as our language does not have mutable
variables. The introduced functions will be named after the name of the field it
acts on. For instance, if we have a record type named Point with fields x and y,
both of type Integer, the introduced functions will be:

set$x :: Point → Integer → Point
set$y :: Point → Integer → Point
get$x :: Point → Integer
get$y :: Point → Integer

In the traditional Hindley–Milner type inference, the type environment must
assign a unique type for each defined identifier. For this reason it is clear why we
cannot have the same field name in two different records. On the other hand, in
some situations it is easy to tell from the context which record a given getter/setter
function refers to. For example, if we already know the type of the record, we know
which function to choose. In a more complex situation, if two records share a field
name, but these fields have different types, and we know the type the field should
have, we can again choose the right setter.

For this reason we split the assumption set and type environment into two parts.
We introduce a separate type environment for records. This type environment can
be ambiguous meaning that more than one type can be assigned to the same field
name. Furthermore we introduce a separate assumption set for records as well. As
stated before, the order of solving the constraint set is arbitrary.

Our idea is that we do not calculate the constraints for the record assumptions
before solving the constraint set, this is why we introduced the separate assumption
set for records. First we solve the “regular” constraint set (denoted by Areg) that is
without the record assumption set (Arec). Then we can use the solution obtained
so far to help to find a matching getter/setter for each record field in the record
assumption set (Arec). After resolving the ambiguous field names we can generate
the constraints for the resolved record assumptions and continue the inference by
solving them.

For the example of the previous section, our assumption sets look like:

Areg = ∅ Arec = {set$x : a},

so the constraints are:

Creg = {b ≡ c, d ≡ Integer→ e, a ≡ c→ d}.

The solution for this is:

S0 = [bc/, d/Integer→ e, ac/→ Integer→ e]. (3.1)

162 A. Góbi, T. Kozsik, M. Mészáros, A. Antyipin, D. Batha, T. Kiss

Examining (2.8) in the Solve algorithm, we notice that we should also apply
the solution to the record assumption set, as if it would be the part of A. The
formal proof of this statement is out of scope of this paper. The transformed record
assumption set in the example will be:

Arec = {set$x : c→ Integer→ e}. (3.2)

As we can see, the information held in the constraints are becoming visible here,
and now we may have enough information to choose the right field type for our
getter/setter even if there are more than one candidates.

If we have an other record named Pair with field x and y of type String, our
record type environment looks like

Γrec = {set$x : Pair→ String→ Pair, get$x : Pair→ String,
set$x : Point→ Integer→ Point, get$x : Point→ Integer,

set$y : Point→ Integer→ Point, get$y : Point→ Integer}.

We have only one element in the record assumption set, so we have to find a
matching pair for this element. It is easy to see that the only possible pair is

set$x : c→ Integer→ e

set$x : Point→ Integer→ Point.

After we have chosen a matching pair, we can generate a constraint from them,
similarly to (2.4) and we can calculate the solution for it.

C′ = {c→ Integer→ e � Point→ Integer→ Point}, (3.3)
S′ = Solve(C′) = [e/Point, c/Point] (3.4)

S1 = S0 ◦ S′ (3.5)
= [e/Point, c/Point, b/Point,

a/Point→ Real→ Point, d/Real→ Point]. (3.6)

As we can see, we got the same result as in (2.10).
On more complex situations there will be more than one element in the record

assumption set, and it is possible that there is an element in the assumption set for
which we can find more than one matches in the record type environment. As the
type inference is not completed yet, it is possible for these elements to be resolved
later. To handle this, we define a new algorithm Choose. The algorithm finds a
pair from the record assumption set and record type environment where there is
one and only one matching element exists in the record type environment for the
element from the assumption set. If there is no such matching pair, the algorithm
fails and the type inference reports an error. Using this algorithm we can iteratively
refine our solution eliminating the elements of the assumption set one by one.

Algorithm 3.1 summarizes our approach described in this section.

Untangling Type Inference and Scope Analysis 163

Algorithm 3.1. Type inference for records

A, C, τ ← Constraints(expression)
Areg,Arec ← Split(A)
if dom(Areg) * dom(Γreg) then report undefined variable exists
else
S ← Solve(C ∪ Areg � Γreg)
Arec ← SArec

while Arec is not empty
A, G← Choose(Arec, Γrec)
S′ ← Solve(A � G)
S ← S ◦ S′
Arec ← S′(Arec\A)

return (S,Sτ)

4. Conclusion

This paper introduced a new approach to handle complexity of scope analysis in
a Hindley–Milner style type inference. Our idea was to defer the name resolution
after we have a partial solution of the type equations, so the scope analysis have
enough type information to made its decisions.

We does not show our solution to handle more than one expression, e.g. a source
file with several functions. This is straightforward if the methods can be ordered
by dependency. But in case of circular dependencies the order of the constraints
will play an important role, otherwise serious anomalies can show up as a result of
the interactions of the functions.

An application for this approach can be the F# language [5] where the name
resolution is a not even type dependent, but is quite complex. The F# language
uses more than one namespaces and complex rules. In this case the name resolution
and the type inference is one complex algorithm, which may can lead to hardly
maintainable code.

In a future we will try to implement record types with shared field names
in Haskell. Some effort has already been taken to achieve this goal. In GHC a
similar solution has already provided. The “Record field disambiguation” syntactic
extension allows name clashes, but the compiler cannot infer these types, one must
place explicit type annotations [8]. A proposed extension to Haskell similar to ours
has been presented in Haskell Prime called Type-directed name resolution [1] using
scoped labels [4].

164 A. Góbi, T. Kozsik, M. Mészáros, A. Antyipin, D. Batha, T. Kiss

References

[1] Proposal: Type-directed name resolution (in Haskell Prime). http://hackage.
haskell.org/trac/haskell-prime/wiki/TypeDirectedNameResolution.

[2] Bastiaan Heeren, Jurriaan Hage, and Doaitse Swierstra. Generalizing Hindley-Milner
type inference algorithms. Technical Report UU-CS-2002-031, Utrecht University,
2002.

[3] S.P. Jones, J. Hughes, L. Augustsson, D. Barton, B. Boutel, W. Burton, J. Fasel,
K. Hammond, R. Hinze, P. Hudak, et al. Haskell 98: A non-strict, purely functional
language, 1999.

[4] Daan Leijen. Extensible records with scoped labels. In Proceedings of the 2005 Sym-
posium on Trends in Functional Programming (TFP’05), 09 2005.

[5] Microsoft Research and the Microsoft Developer Division. The F# 2.0 Language Spec-
ification (RC). http://research.microsoft.com/en-us/um/cambridge/projects/
fsharp/manual/spec.pdf, 03 2010.

[6] Rinus Plasmeijer and Marko van Eekelen. Clean Language Report version 2.1. http:
//clean.cs.ru.nl/download/Clean20/doc/CleanLangRep.2.1.pdf, 11 2002.

[7] J. A. Robinson. A machine-oriented logic based on the resolution principle. J. ACM,
12(1):23–41, 1965.

[8] The GHC Team. Record field disambiguation (section 7.3.14 in The Glorious Glasgow
Haskell Compilation System User’s Guide, Version 6.12.2). http://www.haskell.org/
ghc/docs/6.12.2/html/users_guide/syntax-extns.html#disambiguate-fields.

A. Góbi, T. Kozsik, M. Mészáros, A. Antyipin, D. Batha, T. Kiss
Eötvös Loránd Tudományegyetem, Programozási Nyelvek és Fordítóprogramok Tanszék
Pázmány Péter sétány 1/C., H-1117 Budapest, Hungary

