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Abstract

In this paper, we present DesynchLRU, a new page replacement algorithm.
DesynchLRU is a modified version of the celebrated LRU (Least Recently
Used) page replacement algorithm. The basic distinction between LRU and
DesynchLRU is that, in the former, the pages in cache and RAM always
remain synchronized, whereas, in the latter, they can be desynchronized.
Here, we show that the page fault rate in DesynchLRU is always smaller
than that of LRU. We further analyze the average cost for a page request
and establish conditions for which DesynchLRU would always perform better
than LRU.
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1. Introduction

With the advent of newer and faster technologies, more and more faster memory
chips are being built and various frameworks with different levels of memory hier-
archy are being presented and used in computing systems. All these sophisticated
systems however are extensions of the basic 2-level memory hierarchy system, where
the 2 levels are formed by main memory (i.e., RAM) and the virtual memory [4,
5] (i.e., disk). The motivation for such levels of memory hierarchy is well-known
and is briefly described as follows. The combined size of the program, data and
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stack may exceed the physical memory available for it. Therefore, the operating
system keeps only those parts of the program currently in use in main memory.
Clearly, the idea is to optimize the speed and cost of the program execution by
using more costly but faster main memory along with the cheaper but slower disk
as virtual memory. The basic model works as follows. The programs are divided
in blocks referred to as pages henceforth. The main memory contains the pages of
the program currently in use whereas the disk contains all the pages of the pro-
gram. Therefore, main memory contains a subset of pages in the disk. When a
page is referenced, that is not present in the memory, a page fault occurs. When
a page fault occurs, the operating system fetches the corresponding page from the
disk and has to replace (evict) a page from the main memory to make space for
the fetched page. Now, there are two issues to be considered here. The first issue
relates to which page is to be evicted from the main memory: this is decided by
the page replacement algorithms. The second issue is that the page to be replaced
must be copied back to the corresponding page in the disk if the former is changed
to keep that up to date. This procedure is referred to as writeback. To avoid
redundant time-consuming disk write, writeback is performed only when the page
in the memory is changed (the page is said to be dirty) and selected for eviction.

In the memory hierarchy, position of cache is between processor and main mem-
ory. Cache memories [12, 15, 16] are used in modern, medium and high-speed CPUs
to hold temporarily those pages of main memory which are (believed to be) cur-
rently in use. Cache is faster but costlier than RAM. The same relation that holds
between RAM and disk, holds between Cache and RAM. If the requested page is
not present in cache, this event is called a cache miss. When a cache miss occurs,
the operating system has to choose a page from cache for eviction (using a page
replacement algorithm) to make room for the page that has to be brought in. If
the selected page is modified while in cache (i.e. dirty), it must be rewritten to the
RAM (i.e. a writeback must occur). If, however, the page has not been modified,
no writeback is needed. Note that, if both cache miss and RAM miss occur, the
page from the disk is first brought to RAM and then the same is brought to cache.
In this paper, we focus on page replacement algorithms. The issue of page fault and
the corresponding page replacement algorithms have been the focus of tremendous
attention in operating systems research [1-3, 6-11, 13, 14, 18]. While it would be
possible to pick a random page to evict at each page fault, system performance is
much better if a page that is not heavily used is chosen. If a heavily used page
is removed, it will probably have to be brought back in quickly, resulting in extra
overhead. Among the existing page replacement algorithms in the literature, Least
recently used (LRU) is the most popular and simple. Despite many replacement
algorithms proposed throughout the years, LRU approximations are predominant
in case of actual virtual memory management systems. LRU, however, exhibits
well-known performance problems for regular access patterns over more pages than
the main memory can hold (e.g., large loops).

Again, most of the algorithms do not consider the access time of cache and RAM
(i.e. variation of speed). For example, reading a page from cache needs lesser time
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than reading from RAM. Similarly, disk access time is much greater than memory
access time. In this paper, we present a variation of traditional LRU algorithm
considering these facts. Unlike traditional system, our algorithm desynchronizes
the content of cache and memory. We believe that our algorithm will reduce page
fault rate and also reduce the page replacement cost to some extent. The rest
of the section is organized as follows. In Section 2 we briefly review the related
page replacement algorithms. We present our main result in Section 3. Finally, we
briefly conclude in Section 4.

2. Page Replacement Algorithms

The best possible page replacement algorithm is easy to describe but impossible to
implement [17]. The idea is as follows. At the moment that a page fault occurs,
some sets of pages are in memory. Now, one of these pages will be referenced on
the very next instruction (the page containing that instruction). So, we can label
each page with the number of instructions that will be executed before that page is
first referenced. Assuming that we can do the above, the optimal page replacement
algorithm simply says that the page with the highest label should be removed.
The only problem however is that this algorithm is not realizable, because, at the
time of the page fault, the operating system has no way of knowing when each
of the pages will be referenced next. Still, by running a program on a simulator
and keeping track of all page references, it is possible to implement optimal page
replacement algorithm on the second run by using the page reference information
collected during the first run.

2.1. LRU Page Replacement Algorithm

A good approximation to the optimal algorithm is based on the observation that
pages that have been heavily used in the last few instructions will probably be
heavily used again in the next few. Conversely, pages that have not been used for
ages will probably remain unused for a long time. This idea suggests a realizable
algorithm: when a page fault occurs, throw out the page that has been unused for
the longest time. This strategy is called Least Recently Used (LRU) paging page
replacement algorithm.

3. Our approach

In this section, we present a new approach for page replacement. The basic dis-
tinction of our approach with the existing page replacement algorithms is that in
the latter, the pages in cache and RAM always remain synchronized, whereas, in
the former, they can be desynchronized. In the rest of this section, we describe our
strategy and present DesynchLRU, the new page replacement algorithm.
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3.1. Assumption

An important issue with respect to the page replacement algorithms is to decide
what will be the cache block and main memory page size and whether they be of
equal size? If they are of different size (say two block is equal to one page), then
for a block in cache we have to keep track of its main memory page number and
block number in that page. Moreover complexity will arise for cache writeback.
So, in most of the systems, cache block and memory page are of equal size to keep
memory management task simple. Here, as well, we shall consider system with
cache block and memory page of equal size.

3.2. DesynchLRU: The New Algorithm

In LRU, the set of pages in cache is a subset of pages in the main memory. So,
if a page is in the cache, then it will also be in the main memory, i.e., the main
memory and the cache is always synchronized with each other. In DesynchLRU,
the set of pages in cache may not be a subset of pages in main memory i.e. if a page
is in cache its copy may not be in the main memory. Therefore, the cache and the
main memory will be desynchronized. The main idea of DesynchLRU is as follows.
When selecting a page from main memory (RAM) for eviction, DesynchLRU tries
to select a page whose copy is present in cache. If such a page is not available then
it uses LRU algorithm. If cache page fault occurs, then a page from cache must
be replaced. In case of LRU, we have to write back the page in the main memory
only if the selected page is dirty; the writeback is not needed if the page is not
dirty. But in DesynchLRU, the image of the selected page may not be present in
the main memory. So, it may need to select a page from main memory for eviction
to writeback the page selected from cache irrespective of whether it is dirty or not.

Table 1: Different scenario of updating cache and RAM

Lemma 3.1. In normal state there will always exist at least one page which is both
in cache and RAM.
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Proof. Consider that the last page fault PF_last in the cache was for page p.
Recall that, to bring a page in cache, we first bring it in the RAM from disk and
then bring it in the cache from the RAM. So, after we handle PF_last page p exist
both in cache and RAM. Since, PF_last was the last page fault in the cache and
since page p from RAM can never be evicted without a further page fault in the
cache, the result follows. �

3.3. Page Fault in RAM for DesynchLRU

In this subsection, we analyze the probability of page faults in RAM in strategy
DesynchLRU. Assume that PF_DesynchLRU and PF_LRU denote the probabil-
ity of page fault in RAM, respectively, for DesynchLRU and LRU. We prove the
following lemma.

Lemma 3.2. PF_DesynchLRU < PF_LRU

Proof. Assume that there are k, m and n pages, respectively, in the cache, RAM
and the disk. In case of LRU, the probability that a virtual page is in cache or
RAM is m

n . This follows from the fact that in LRU, Cache is synchronized with
RAM. Therefore, the RAM page fault can only occur when a page p is referenced
such that p doesn’t exist in RAM. So, PF_LRU = 1− m

n . In case of DesynchLRU,
the probability that a virtual page is in cache or RAM is m+k

n . Now, recall that
in this case, Cache is not synchronized with RAM anymore. Therefore, we have
PF_DesynchLRU = 1 − m+k

n . Clearly, 1 − m+k
n < 1 − m

n and hence the result
follows. �

3.4. An Illustrative Example

Lemma 2 proves that the page fault rate of DesynchLRU is lesserthan that of LRU.
We now present an example illustrating thatfact. Consider a cache with 3 pages, a
main memory with 6 pagesand the reference string 1 2 3 4 5 6 7 8 1 2. The situations
with LRU and DesynchLRU are illustrated in Figure 1 and 2 respectively.

Figure 1: In case of LRU
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Figure 2: In case of DesunchLRU

Remark 3.3. Here we can observe that, in case of DesynchLRU, there is no main
memory page fault for pages 1 and 2 when they are referenced for the second time.
But in case of LRU page fault occurs.

3.5. A Probabilistic Analysis
Previously we have shown that probability of page fault in our proposed algorithm
is less than that of LRU (Lemma 3.2). But this criterion alone does not always
justify the superiority of an algorithm. In case of LRU, when we evict a page from
cache we only writeback the page in RAM if the page is modified (dirty) while in
cache. But in case of the proposed algorithm when we evict a page from cache
we may need to writeback the page in RAM irrespective of whether it is dirty or
not. This may create an extra overhead. In the rest of this subsection, we take
an effort to deduce the exact condition for which DesynchLRU will perform better
than LRU.

In case of LRU cost of page request in different scenario of RAM and cache are as
follows:
Cache - hit,RAM -hit: no cost
Cache -hit, RAM -miss: this scenario will not occur in LRU
Cache -miss, RAM -hit:

– Cost to transfer the requested page from RAM to cache.
– If the evicted page from cache is dirty then the writeback cost of cache to

RAM for that page.
Cache -miss, RAM -miss:

– Cost to transfer the requested page from RAM to cache.
– If the evicted page from RAM is dirty then the writeback cost of RAM to

disk for that page.
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– then the situation is as like Cache -miss, RAM -hit.
In case of DsynchLRY cost of page request in different scenario of RAM and cache
are as follows:
Cache - hit,RAM -hit: no cost
Cache -hit, RAM -miss: no cost
Cache -miss, RAM -hit:

– Cost to transfer the requested page from RAM to cache.
– writeback cost of cache to RAM for the evicted page from cache.

Cache -miss, RAM -miss:
– select a page from cache for eviction to make room for the requested page

thus writeback cost of cache to RAM for the evicted page.
– cost to transfer the requested page from disk to RAM.
– If the evicted page from RAM is dirty and the page is not in cache then the

writeback cost of RAM to disk for that page.
– cost to transfer the page from RAM to cache.

Let, the number of pages in cache, RAM and disk are respectively k, m and n.
Assume that the probability that a page is dirty, P(dirty) = δ. We further assume
that the costs of transferring a page from RAM to cache and RAM to disk are,
respectively, α and β. Let C_LRU and C_DesynchLRU denote the average cost
for an arbitrary page request, respectively, for LRU and DesynchLRU. Since, it is
not possible to assume exact page reference pattern before executing the concerned
program, we perform an average case analysis. Here, we assume uniform probability
for each page to be referenced. In case of LRU

P(cache hit, RAM hit) = k
n . [As if a page is in cache it is also in RAM]

P(cache miss, RAM miss) = 1 − m
n = n−m

m . [As if a page is not in RAM it can
not be present in cache]

P(cache miss, RAM hit) = 1 - P(cache hit, RAM hit) - P(cache miss, RAM miss)
= m−k

n

C_LRU = 0 · k
n + m−k

n [α + δα] + n−m
n [β + δβ + α + δα]

= αn−k
n + αδ n−k

n + β n−m
n + βδ n−m

n .

In case of the proposed algorithm (here we can consider pages in cache and RAM
are independent).

P(cache hit, RAM hit) = k
n · m

n

P(cache hit, RAM miss) = k
n · n−m

n

P(cache miss, RAM miss) = n−k
n · n−m

n

P(cache miss, RAM hit) = 1 - P(cache hit, RAM hit) - P(cache hit, RAM miss)
- P(cache miss, RAM miss) = m(n−k)

n2

Average cost for an arbitrary page request is

C_DesynchLRU



116 Raqibul Hasan, M. Sohel Rahman, Chowdhury Sayeed Hyder

= 0 · k
n · m

n = 0 · k
n · n−m

n + m(n−k)
n2 [α + α] + (n−k)(n−m)

n2

[
β + n−k

n δβ + α + α
]

= 2α
[

m(n−k)
n2 + (n−k)(n−m)

n2

]
+ β (n−k)(n−m)

n2 + βδ (n−k)2(n−m)
n3

= 2αn−k
n + β (n−k)(n−m)

n2 + βδ (n−k)2(n−m)
n3 .

Remark 3.4. n−k
n δβ is the writeback cost of RAM to disk for the evicted page

from RAM. This cost is incurred when the evicted page from RAM is dirty and
the page is not in cache. Now, for DesynchLRU to outperform LRU we must have
C_LRU > C_DesynchLRU. So, we have:

αn−k
n + αδ n−k

n + β n−m
n + βδ n−m

n > 2αn−k
n + β (n−k)(n−m)

n2 + βδ (n−k)2(n−m)
n3

⇒ δ
[
αn−k

n + β n−m
n − β (n−k)2(n−m)

n3

]
> αn−k

n + β (n−k)(n−m)
n2 − β n−m

n

⇒ δ >
α n−k

n +β (n−k)(n−m)
n2 −β n−m

n

α n−k
n +β n−m

n −β (n−k)2(n−m)
n3

4. Conclusion

In this paper, we have presented DesynchLRU a new page replacement algorithm,
which is essentially a modified version of the celebrated LRU algorithm. The basic
distinction of our approach with the existing page replacement algorithms is that
in the latter, the pages in cache and RAM always remain synchronized, whereas,
in the former, they can be desynchronized. We have shown (in Lemma 3.2) that
the page fault rate in DesynchLRU is smaller than that of LRU and hence we
are not giving any simulation result. We have also analyzed the average cost for a
page request and establish conditions for which DesynchLRU would always perform
better than LRU.
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