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Abstract

Multi-Domain Logic (MDL) is a generalization of signed logic, in which
every variable has its own domain. This aspect increases the efficiency of
direct solving of MDL satisfiability, because the solving process proceeds by
reducing the size of the domains (contradiction appears as an empty domain).
In contrast to the usual approach of translating signed logic satisfiability into
boolean satisfiability, we implement the generalized DPLL directly for MDL,
using a specific version of the techniques used for signed logic. Moreover, we
use a novel technique – variable merging, which consists in replacing two or
more variables by a new one, whose domain is the cartesian product of the old
domains. This operation is used during the solving process in order to reduce
the number of variables. Moreover, variable merging can be used at the
beginning of the solving process in order to translate a boolean SAT problem
into an MDL problem. This opens the possibility of using MDL solvers as
an alternative to boolean solvers, which is promising because in MDL several
boolean constraints can be propagated simultaneously. Our experiments with
a prototype eager solver show the effects of the initial merging factor of
boolean variables, as well as the effects of different design decisions on the
efficiency of the method.

Keywords: SAT, Multi-Domain Logic, Signed Logic

MSC: 03 Mathematical logic and foundations

*Partially supported by the RISC-Linz Transnational Aceess Programme supported by the
European Commission FP6 for Integrated Infrastructures Initiatives under the project SCIEnce
(contract No. 026133).

95



96 T. Jebelean, G. Kusper

1. Introduction

Signed logic [2, 7] is a special type of multi-valued logic in which the set of satisfying
values for the variables may differ in different clauses. Namely, a signed formula
is a conjunction of signed clauses, and a signed clause is a disjunction of signed
literals of the form S : p, where S is a set (the sign) and p is a variable. (S is
called the support of the variable in the respective clause.) The union of all signs
constitute the domain N of the formula. An interpretation I is a mapping from
the set of variables P to the set of truth values N , and it satisfies a literal S : p
if I(p) ∈ S. We may assume that each variable occurs at most once in each clause
(otherwise we merge the corresponding literals by union of their supports). When
S = ∅ the literal may be omitted from the clause, and when S = N then the whole
clause is redundant.

The classical methods from boolean logic generalize in a natural way to signed
logic – see e. g. [2], which also describes the generalization of the DPLL algorithm
[3], including a specific aspect of it for signed logic, namely the elimination of
branches corresponding to certain redundant truth values. (We will describe and
use this strategy in the sequel under the name of elimination of weak assignments.)
However, we found only few implementations of a direct method for solving signed
logic problems – e. g. [7], which is targeted at a restricted class of formulae.
Rather, most approaches are based on translating signed logic into boolean logic
and using some version of a SAT algorithm. For instance, [1] uses the information
from the original signed logic problem in order to guide the SAT search.

We present here a direct approach for solving signed logic problems, based on
the generalization of DPLL method, which exhibits two novel aspects:

• separation of the domains of the variable,

• dynamic merging of the domains of the variables.

In contrast to the current approaches, we demonstrate how to solve boolean SAT
problems by transforming them into signed logic problems and then applying our
direct solver. This may constitute an efficient alternative to the current SAT solvers
based on unit propagation, because, in the context of signed logic, more boolean
constraints can be propagated simultaneously. For the representation of the signs
we use strings of bits in the current implementation, but this is not essential for
the main algorithm.

We call Multi-Domain Logic (MDL) the generalization of signed logic in which
the domains of the variables may differ. Although from the theoretical point of
view the expressivity of MDL does not differ from signed logic, in practice this
distinction leads to more efficient solving methods. This is because the domains
can be reduced during the solving process, and finding a contradiction is expressed
as the reduction of the domain of a variable to the empty set. Initially the domain
of a variable which does not occur in unit clauses is the union of all its supports.
Otherwise, the domain is the intersection of all the supports from the unit clauses
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containing the respective variable. Unit resolution consists in intersecting the sup-
port of a non-unit clause with the respective domain - when this is empty then the
literal disappears. If a support includes the corresponding domain, then the whole
clause can be deleted (unit subsumption). Whenever a new unit is obtained, this
will reduce the respective domain. When no new unit can be obtained, then one
must branch on one of the variables, by splitting its domain. (We present here
experiments with few splitting strategies.)

While the operations above are straightforward generalizations of boolean con-
straint propagation, MDL also benefits from specific strategies. Similarly to signed-
logic, one may detect certain redundant elements in domains, which we call weak
assignments: If an element a of a domain occurs in all supports together with an-
other element b, then we say a is weaker then b and a can be eliminated from the
domain. Novel in our approach is the use of a technique which we call variable
merging. This consists in replacing two or more variables by a new one, whose do-
main is the cartesian product of the old domains. In each clause, the disjunction of
the literals containing the old variables is replaced by one literal whose support is
constructed in a straightforward way. Variable merging is used at the beginning of
the solving process in order to translate a boolean SAT problem into signed logic,
but also during the solving process in order to reduce the number of variables,
when some domains become relatively small.

Multi-domain logic (MDL) was introduced in [4]1, which also presents the first
practical experiments with this method for solving signed logic problems directly,
and in particular those which are constructed from boolean SAT problems. The
idea of MDL solving improves on earlier boolean solvers based on simultaneous
propagation of several boolean units [5, 6].

The purpose of this paper is to illustrate the effectiveness of the MDL version
of the DPLL algorithm and to investigate the efficiency of different combinations of
specific strategies. For rapid prototyping we use an eager algorithm implemented
in Java, thus both the size of the SAT instances as well as the absolute timings
are not impressive. However we obtain interesting facts when comparing different
strategies details:

• Increasing the number of the boolean variables during the original translation
leads to a significant speed-up until a certain threshold, which depends on
the implementation environment but also on the structure of the original
problem.

• The domain splitting strategies during branching have a significant effect on
certain classes of problems.

• Both the deletion of weak assignments, as well as the dynamic merging have
a notable impact on efficiency.

These findings constitute a good motivation for a more complex implementation

1Before we learned about signed logic.
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using lazy techniques, and for further experiments and possible theoretical devel-
opments.

2. Proof Techniques

Variable merging (VM). Merging two variables x, x′ with domains D,D′ con-
sists in replacing x, x′ by a new variable y, which (intuitively) represents the
pair 〈x, x′〉 and ranges over D × D′. A disjunction A : x ∨ A′ : x′ becomes
((A × D′) ∪ (D × A′)) : y. If a clause contains only x, then we have to merge it
with D′ : x′. Similarly, if a clause contains only x′, then we have to merge it with
D : x. Each occurrence of x and x′ should be merged, otherwise the new variable
y would overlap the old ones.

By induction, merging extends to an arbitrary number of variables.

Variable clustering. Classical boolean variables can be seen as ranging over the
domain {0, 1}. As a first step of the MDL based SAT solving algorithm, the boolean
problem is transformed by clustering the variables. The clustering factor (number
of boolean variables per MDL variable) may be fixed (as it is used in the present
experiments) or variable. Before clustering we perform in fact a preprocessing step
for detecting which variables occur more often together in clauses, and we try to
group them together. The experiments presented in our previous work [4] show
that the preprocessing results in a moderate increase in the efficiency of the MDL
solving process.

Dynamic Variable Merging. We also experiment with dynamic variable merg-
ing, that is binary merging of variables during the execution of the DPLL algorithm.
When no new units can be obtained, then merging of two variables which occur
together in a binary clause creates a new unit, thus split can be avoided. We apply
merging if the size of the new domain is not bigger than the a 2k+t, where k is the
original clustering factor and t is a merging threshold.

Generalized DPLL. The Davis-Putnam-Logemann-Loveland algorithm [3] gen-
eralizes to MDL by extending unit subsumption and unit resolution. Let x be a
variable symbol, A,B constant sets, and C a disjunction of MDL literals. The unit
clause A : x subsumes the clause (B : x) ∨ C if A ⊂ B. The resolvent of the unit
clause A : x and the clause (B : x) ∨ C is the clause (A ∩B : x) ∨ C. In contrast to
propositional logic, the literal containing x is not always canceled, but only when
A∩B = ∅. There may be more units containing the same variable. These collapse
into one unit by resolution, and the resulting set is the new domain of the respec-
tive variable. During DPLL, each time a new unit is obtained, it is intersected with
the current domain of the respective variable in order to obtain the new domain.
When the domain becomes empty, we have a contradiction on the respective search
branch. As in the DPLL method, we use unit subsumption and unit resolution for
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performing unit propagation (UP), and constraint propagation (BCP). When all
units have been propagated, then either all clauses have been subsumed (we have
a solution), or we can create a new unit out of a binary clause by variable merging,
or we must branch the search tree – which is can done by splitting of one of the
domains using in various strategies (see below).

Deletion of weak assignments (DoWA). An assignment (element of a do-
main) is weak if it appears in all supports together with another one, and weak
assignments can be ignored. In [2] this is used in order to reduce the branching of
the search tree, and we use it (see [4]) in order to reduce the domain.

Branching strategies. In MDL we branch on a partition of the domain of a
selected variable. Our present experiments use various choices for the variable and
for the partition.
Choice of variable:

• MinDom: a minimal domain;

• MinDomClause: a minimal domain from a minimal clause;

• MinLit: a minimal literal from a minimal clause.

Minimality of a clause, domain, and literal refer to the number of literals, cardi-
nality of the set, and cardinality of the sign, respectively.
Choice of partition:

• SplitLit: the sign of the literal and its complement (only with MinLit);

• SplitHalf: half of the domain on each branch;

• SplitAll: one branch for each assignment.

When SplitHalf and SplitAll are used together with MinLit, then we generate
additionally a branch corresponding to the complement (w.r.t. the domain) of the
sign of the respective literal. In signed logic the SplitLit and SplitAll techniques
are known and they are described in [2], however without implementation.

3. Implementation and Experimental Results

Data representation. The representation of a MDL formula is described in [4].
Here we only illustrate the idea of our representation by exhibiting the represen-
tation of clusters of two propositional variables a, b. The table below lists the bit
strings, the corresponding sign sets, and the formula which is encoded.
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0000 {} F 1000 {00} ¬a ∧ ¬b
0001 {11} a & b 1001 {00, 11} a ⇔ b
0010 {10} a & ¬b 1010 {00, 10} ¬b
0011 {10, 11} a 1011 {00, 10, 11} a ∨ ¬b
0100 {01} ¬a & b 1100 {00, 01} ¬a
0101 {01, 11} b 1101 {00, 01, 11} ¬a ∨ b
0110 {01, 10} a× b 1110 {00, 01, 10} ¬a ∨ ¬b
0111 {01, 10, 11} a ∨ b 1111 {00, 01, 10, 11} T

These strings of bits can be represented as a list (or array) of computer words,
and then union and intersection can be computed using hardware logical operations
on words: union becomes bitwise or and intersection becomes bitwise and. For
instance, if we merge 5 propositional variables into a multi-variable, then its domain
has 25 = 32 elements, so we can represent it on a 32-bit computer word. For
higher clustering factors, however, the length of the representation in words grows
exponentially, thus from a certain value the positive effect of clustering will be
canceled by the higher cost of multi-word operations (as also confirmed by our
experiments).

Experimental Results In order to demonstrate the effectiveness of MDL and
to check the basic implementation principles, we implemented a variant of DPLL
method described in Section 2.

The implementation is realized in Java using eager principles, with the main
purpose is not to compete with the modern SAT solvers based on lazy data struc-
tures, but to allow us to determine what is the effect of using various techniques
in various combinations. We used a HP Compaq nx6110 notebook (32 bits) with
Pentium M 1.86 GHz processor and 512 MB memory.

We tested our implementation on some unsatisfiable problems from the SAT-
LIB – Benchmark Problems homepage (www.satlib.org). Namely, we used the
uuf-50-01.cnf problem and the hole6.cnf problem, because they belong to a
scalable class of problems, and are of a complementary nature. The former is
randomly generated and has no structure or symmetry, while the latter is symmetric
and well structured.

We experiment with unsatisfiable problems, because this gives more reliable
information on the general behavior of the program. On satisfiable problems the
running time may be influenced by the randomness of early found solutions.

We investigate the main aspects of the novel methods: cluster preprocess-
ing, branching strategies, deletion of weak assignments (DoWA), variable merging
(VM), and the variable merging threshold.

All experiments are performed with increasing clustering sizes (number of orig-
inal propositional variables per MDL variable).

Cluster preprocessing. The effect of cluster preprocessing confirms what we
reported in the previous paper: a speed-up between 40 − 60% for the randomly
generated problems, and almost no speed-up for the pigeon–hole problems (because
they are already well clustered). Therefore we will show in detail only the effect
on the randomly generated problem uuf-50-01.cnf.
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Figure 1: uuf50-01.cnf: Absolute timings without-, and relative
timings with clustering.
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Figure 2: uuf50-01.cnf: DoWA and VM (timings relative to Fig.
1. with clustering).

Branching strategies. In the previous section we presented 3 split strategies
and 3 choice strategies, which we present in 4 combinations – which appear to be
more efficient.

First we show the running time of this methods on the uuf50-01.cnf prob-
lem from the SATLIB page. Figure 1 shows the case where we do not use any
simplification techniques.

Dynamic variable Merging. To create a new unit out of a binary clause is
quite expensive, because we have to know the exact domains of the two variables.
The current implementation is lazy in the sense that it recalculates a domain only if
a new unit is found for the corresponding variable. Therefore, we use the following
heuristic for deciding wether to compute the domains or not. Assume the binary
clause is A : x ∨ B : y. If |A| ∗ |B| ≤ 2k+t−1, where k is the clustering factor and
t is a merging threshold, then we calculate the domains of x and y. This heuristic
performed very well. It covered the 88% of the cases where the the new domain
really fits in 2k+t bits and its guess was never wrong.
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Figure 3: hole6.cnf: Absolute-, and relative timings when using
DoWA and VM.
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Deletion of weak assignments and Variable merging. The problems are
already cluster preprocessed.

In Figure 2 we can see the effect of deletion of weak assignments, for short
DoWA. Note that in some cases it even slows down the search, and in some cases
it gives 5 − 15% speed-up. The average of these values is 101%. For a clustering
factor of 5 the average is 86%.

In the same Figure 2 we can see the effect of variable merging (VM). The effect
ranges from slow down to 2 − 8% speed-up. It appears that DoWA gives slightly
better speed-up than VM, but in fact the average of these values are 99%, which
is a bit better than in case of DoWA, but DoWA gives bigger speed-up.

In conclusion, on this uniform random 3-SAT problem, the effect of cluster
preprocessing is large but the one of DoWA and VM is small.

We have also tested this simplification techniques on the “pigeonhole problem”
hole6.cnf (7 pigeons and 6 holes). Figure 3 shows the absolute running time of
4 branching strategies, as well as the improvement of efficiency (as relative time)
when using DoWA and VM together. It is difficult to judge which branching
method is the best. The effect of DoWA and VM together on hole6.cnf is very
significant, like 40− 90% speed-up. The average of these values is 39%. So in this
case we obtain very good results with the same simplification techniques which gave
virtually no speed-up in case uuf50-01.cnf. This is probably due to the regular
structure of the pigeonhole problem.

Dynamic merging of variables. As mentioned in section 2, merging of vari-
ables can be further stimulated by allowing new MDL variables of greater size than
the original ones (as controlled by the parameter merging threshold). In Figure 4
(left) we see that bigger merging threshold leads in general to a higher number of
variable merging and, therefore, less nodes in the search tree. We would expect
here an exponential curve since the bigger the merging threshold is the bigger the
probability that two domains can be merged (note, that in this implementation
the size of a domain is limited to 2k, where k is rate of propositional variables /
multi-variable, k is fixed). If the merging threshold is 2k, then virtually all binary
clauses can be merged (only those not, which contains an already merged multi-
variable). But we see that the number of variable merging starts to increase and
then remains almost the same, then drops.

The explanation of this observation is that the number of unit propagations
steps starts to decrease quite fast. It is so because each variable merging prevents
a split and allow a unit propagation instead (note that we merge multi-variables
only if they occur in a binary clause, which, of course, becomes a unit after variable
merging). This cuts the search spaces (an early variable merge during the search
can dramatically cut it) and, therefore, the number of unit propagation steps de-
creases. But if the search space is smaller then the probability of variable merges is
also smaller. Furthermore, a merged multi-variable is less likely takes place again
in a merge, because its domain has A ∗ B elements, where A,B are the size of
the domains before merging. Hence, the number of variable merges cannot grow
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exponentially as the merging threshold grows.
In Figure 4 (right) we see that to solve the hole6.cnf problem we need only

few milliseconds if we use variable merging, rate 6 (which is fixed in this figure)
of propositional variables / multi-variable, and merging threshold 7 . This is even
better if we have rate 13 but no dynamic merging. The explanation of this observa-
tion is that with rate 6 all clauses of the problem are already binary and they can
be immediately merged because of the high merging threshold, 6 + 7 ≥ 2 ∗ 6. Note
that merging threshold 6 also was this property; indeed lot of the input clauses can
be merged, but not those which contain already merged multi-variables. So with
this high merging threshold after variable merging we have all units, so we spend
only time on initialization and variable merging to solve hole6.cnf. One would ex-
cept the same behavior in case rate 13 if we have no dynamic merging. But this
does not guarantee that all clauses are units, we have lot of units but also some
binaries, this is why it needs more time. To summarize, it is better to use rate k
and merging threshold t than rate k + t.

This would suggest to choose very big numbers for the clustering factor k, and
and for the threshold t, but then we need 2k+t bits to store a literal (at least in
the current implementation), which results in the unfeasibility of the operations on
literals after certain limits.

4. Conclusions

The multi-domain approach to satisfiability solving represents an effective alter-
native to boolean SAT algorithms, although its possible superiority in efficiency
remains doubtful in absence of more sophisticated theoretical and practical inves-
tigations.

However, the results obtained with this preliminary eager implementation con-
stitute a good motivation for further refinements of the techniques and of the
solving strategies.

Further work includes more comprehensive experiments with more classes of
problems and with larger instances, as well as more sophisticated lazy implemen-
tations generalizing the current efficient methods used in SAT solvers.

In contrast to boolean logic, MDL presents more rich opportunities for theoret-
ical insights and algorithmic developments regarding various aspects of the solving
process: the preprocessing for static and for variable clustering, the choice of do-
main for splitting, the domain splitting strategies for branching, the strategies for
the merging of variables, the representation of domains and of signs, as well as the
data structures representing variables, clauses, etc.
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