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Abstract

This paper deals with the Queueing Theory and some mathematical mod-
els of queueing systems. Starting with the historical backgrounds it gives an
overview of different solution methods and tools. Then the basic laws and for-
mulas are introduced. It highlights several recent advances and developments
of the theory and new applications fields are listed. It briefly summarizes the
achievements of Hungarian researchers to the Queueing Theory and the most
cited result of the author is mentioned. It ends with the References of the
most important sources.
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1. Introduction

As the reader will quickly discover, this article is a short survey - from my personal
perspective - of 32 years of research, teaching on the modeling, analysis, and ap-
plications of queueing systems. My choice of topics is far from exhaustive; I have
focused on those research achievements that I believe have been some of the most
significant in their contributions to queueing theory and to its applications. They
are the contributions that I have admired and appreciated the most over the course
of my teaching and research activities. Another author would undoubtedly have
made different choices, as they did in several survey papers on queueing theory.
The selection has not been easy at all since there are so many nice results. My
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aim is very simple, I would like to draw the attention of readers to a very unpleas-
ant activity, namely waiting. I have collected some sayings or Murphy’s Laws on
Queueing. Here you are:

• "If you change queues, the one you have left will start to move faster than
the one you are in now.

• Your queue always goes the slowest.

• Whatever queue you join, no matter how short it looks, will always take the
longest for you to get served."

A queue is a waiting line (like customers waiting at a supermarket checkout
counter); queueing theory is the mathematical theory of waiting lines. More gen-
erally, queueing theory is concerned with the mathematical modeling and analysis
of systems that provide service to random demands.

A queueing model of a system is an abstract representation whose purpose is
to isolate those factors that relate to the system’s ability to meet service demands
whose occurrences and durations are random. Typically, simple queueing models
are specified in terms of the arrival process the service mechanism and the queue
discipline. The arrival process specifies the probabilistic structure of the way the
demands for service occur in time; the service mechanism specifies the number of
servers and the probabilistic structure of the duration of time required to serve a
customer, and the queue discipline specifies the order in which waiting customers
are selected from the queue for service. Selecting or constructing a queueing model
that is rich enough to reflect the complexity of the real system, yet simple enough
to permit mathematical analysis) is an art. The ultimate objective of the analysis
of queueing systems is to understand the behavior of their underlying processes so
that informed and intelligent decisions can be made in their management.

Then, the mathematical analysis of the models would yield formulas that pre-
sumably relate the physical and stochastic parameters to certain performance mea-
sures, such as average response/ waiting time, server utilization, throughput, prob-
ability of buffer overflow, distribution function of response/waiting time, busy pe-
riod of server, etc. The art of applied queueing theory is to construct a model that
is simple enough so that it yields to mathematical analysis, yet contains sufficient
detail so that its performance measures reflect the behavior of the real system.
In the course of modeling one could use analytical, numerical, asymptotic, and
simulation methods integrated into performance evaluation tools.

In the course of modeling we make several assumptions regarding the basic
elements of the model. Naturally, there should be a mechanism by which these
assumptions could be verified. Starting with testing the goodness of fit for the
arrival and service distributions, one would need to estimate the parameters of
the model and/or test hypotheses concerning the parameters or behavior of the
system. Other important questions where statistical procedures play a part are in
the determination of the inherent dependencies among elements and dependence
of the system on time.
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Starting with a congestion problem in teletraffic the range of applications has
grown to include not only telecommunications and computer science, but also man-
ufacturing, air traffic control, military logistics, design of theme parks, call centers,
supermarkets, inventories, dams, hospitals, and many other areas that involve ser-
vice systems whose demands are random. Queueing theory is considered to be
one of the standard methodologies (together with linear programming, simulation,
etc.) of operations research and management science, and is standard fare in aca-
demic programs in industrial engineering, manufacturing engineering, etc., as well
as in programs in telecommunications, computer engineering, and computer sci-
ence. There are dozens of books and thousands of papers on queueing theory, and
they continue to be published at an ever-increasing rate. Searching the Google for
"Queueing Theory" I have found 1880 hits.

This tremendous push for new results forced more and more academic journals
to publish articles in queueing and even open new sections. In 1986, Baltzer Verlag,
AG launched a new academic journal entitled Queueing Systems (edited by N.U.
Prabhu), which is devoted entirely to queueing. Many other journals, in the field of
probability, operational research, telecommunication, industrial engineering, com-
puter science, management science publish articles on queueing extensively. The
flow of new theories and methodologies in queueing has become very hard to keep
up with. Surveys on the hottest topics in queueing and related areas are scattered
over a large variety of scientific magazines. A sort of manual would be desirable,
indicating where to find the hottest topics and where to concentrate one’s efforts
should queueing become one’s interest. A careful elaboration of major themes
would take many years of work after which the results would then be outdated!

After all these considerations I have decided to give a view of my personal
perspectives of Queueing Theory and its Applications. I have been teaching and
doing research on this topic for 32 years. I have realized that the applications
of the theory became more and more important. In the following I would like to
mention some of my favorite books on theory: Allen [1], Artalejo-Gomez-Corral [2],
Bolch-Greiner-De Meer-Trivedi [4], Cooper [5], Gnedenko-Kovalenko [14], Gross-
Shortle-Thompson-Harris [15], Khintchine [20], Kleinrock [21], Kobayashi-Mark
[23], Takagi [30], Takács [32], Trivedi [35]. Some recent books on applications,
mainly computer networks and telecommunications, due to web-based research are
the following: Daigle [6], Giambene [13], Haghighi [17], Kleinrock [21]. Finally, I
would like to mention some materials written by Hungarian authors: Györfi [16],
Lakatos-Szeidl-Telek [24], Sztrik [29], and the Hungarian translation of the famous
book by Kleinrock [22].

Due to the huge interest of theory and application the queueing community led
by Professor Hlynka, created a home page

http://web2.uwindsor.ca/math/hlynka/queue.html

where the most important information can be found concerning materials, confer-
ence, softwares, etc.

Just to imagine how important this topic I visited the Google Scholar for cita-
tions of the most popular books on queueing theory, not mentioning the ones which
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Agner Krarup Erlang, 1878–1929

use the theory. I found the following number of citations, Allen [1]: 715, Cooper
[5]: 1166, Gnedenko-Kovalenko [14]: 314, Gross-Harris [15]: 2610 ( for earlier edi-
tions), Kleinrock [21], for Vol.1: 5813, Vol.2:1736, Manual: 2500, Kobayashi [23]:
350 ( for earlier edition), Takagi [30]: 1190, Takács [32]: 888. I must point out that
many of the Russian contributions are not refereed and not cited in spite of their
importance due to the lack of information for western researchers.

2. Origin and Developments

The history of Queueing Theory goes back nearly 100 years. It was born with the
work of A. K. Erlang who published in 1909 his paper, The Theory of Probabilities
and Telephone Conversations, [10]. His most important work, Solutions of Some
Problems in the Theory of Probabilities of Significance in Automatic Telephone
Exchanges , [11] was published in 1917, which contained formulas for loss and
waiting probabilities which are now known as Erlang’s loss formula (or Erlang
B-formula) and delay formula (or Erlang C-formula), respectively. Erlang’s loss
model assumes Poisson arrivals of telephone calls, namely, the number of sources
or subscribers is sufficiently large. If the number of sources is finite and not so
large, then a more accurate loss formula is provided by the Engset’loss formula,
which was published by the Norwegian mathematician Engset. We should mention
that the Erlang and the Engset loss model and their loss formulas remained the
most widely used results in telephone engineering.

Erlang laid the foundation for the place of Poisson (and hence, exponential)
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distribution in queueing theory. His papers written in the next 20 years contain
some of the most important concepts and techniques; the notion of statistical equi-
librium and the method of writing down balance of state equations (later called
Chapman-Kolmogorov equations) are two such examples. Erlang’s motivation was
to develop tools for the analysis and design of telephone systems) an application
that continues to the present day to motivate research in queueing theory.

It should be noted that in Erlang’s work, as well as the work done by others
in the twenties and thirties, the motivation has been the practical problem of con-
gestion. The trend toward the analytical study of the basic stochastic processes
of the system continued, and queueing theory proved to be a fertile field for re-
searchers who wanted to do fundamental research on stochastic processes involving
mathematical models.

Mathematical modeling is a process of approximation. A probabilistic model
brings it a little bit closer to reality; nevertheless it cannot completely represent
the real world phenomenon because of involved uncertainties. Therefore, it is a
matter of convenience where one can draw the line between the simplicity of the
model and the closeness of the representation.

Renewed interest in queueing theory and its potential applications outside of
telecommunications came with the codification of the field of operations research
in the early 1950’s. And in the early 1960’ s queueing theory was rediscovered by
researchers interested in the performance analysis of time-shared computer systems.
The use of queueing theory as a tool for the performance evaluation of computer
systems and components of computer systems is now well established with the result
that most undergraduate computer science majors receive at least some exposure
to its models and methodology.

By the mid-70’s researchers interested in modeling the performance of computer
systems had discovered the Jackson network and its variants and come to appreciate
the versatility and applicability of such models. In those days, the emphasis was
on systems consisting of a mainframe computer with disk storage and satellite
terminals, a precursor to what we would now call a local area network (LAN).
The idea of a communication network tying together widely separated computers
was just a gleam in the eye of Leonard Kleinrock and a few other visionaries.
It was Kleinrock who, more than anyone else, was responsible for spreading the
word among computer scientists about Jackson networks in particular and queueing
theory in general.

Recently web-based research dominates the main directions. It is difficult to
list all the main trends, but in my opinion the followings certainly belong to them:
long-range dependence, numerical problems of stochastic processes, time-dependent
solutions, modeling tools, retrial systems, approximations, simulations, statistical
inference. For a more detailed discussions about ongoing research, see Dshalalow
[8, 9]. Readers interested in the history of queueing theory are referred to, among
others Dshalalow [8], Takagi [30] where extensive Bibliographies were collected
involving numerous contributions of Russian experts lead by Khintcine, Gnedenko,
Kovalenko, Bocharov, Rykov, too.
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Boris Vladimirovich Gnedenko, 1912–1995

Leonard Kleinrock, 1934–

Research on queueing theory and its applications is very active, year-by-year
different conferences, workshops are held. Just for illustration I would like to
mention two of them
Third Madrid Conference on Queueing Conference, June 28 - July 1, 2010 , and
22nd International Teletraffic Congress, September 7-9, 2010, Amsterdam. Some
topics are

• Performance of wireless/wired networks

• Business models for QoS

• Performance and reliability tradeoffs
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• Performance models for voice, video, data and P2P applications

• Scheduling algorithms

• Simulation methods and tools

It is my feeling that at present queueing theory is divided into two directions. One
is highly abstract and the other highly practical. It seems that this split will con-
tinue to grow wider and wider. Progress in the theory of stochastic processes (espe-
cially point, regenerative, and stationary processes) will influence new approaches
to queueing theory. This may be in the form of new methods, new interpretations,
and the development of new theories with wide applicability. Researchers in ab-
stract probability usually do not have queueing theory in mind; different talents are
required to find applicability of their results. Other examples, are diffusion approx-
imation, the large deviations technique, and random fields. One may hope that the
near future will bring applications of superprocesses, the object of current research
in stochastic processes. Progress in technical developments of systems involving
various forms of traffic created the need for mathematical analysis of performance
of individual systems. This brings new problems which require new tools, and the
search for these tools is of great practical importance. This is clearly visible not
only in teletraffic theory, but also in other disciplines where queueing methods are
used (biological and health studies, computers). As already mentioned, simulation
and numerical analysis are frequently the only way to obtain approximate results.
It is therefore hoped that the gap between these two directions may eventually be
diminished. Idealistically, this could be achieved when theoreticians learn about
practical problems and practitioners learn about theory. In present times of great
specialization, this is highly unrealistic. Nevertheless, one could try to work in this
direction, at least with our students in universities, by stressing the importance of
theory and applications. Otherwise, researchers could not find a common language.

3. Kendall’s Notation

David G. Kendall, 1918–2007
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3.1. Components of a Queueing System

While analyzing a queueing system we can identify some basic elements of it.
Namely,

Input process: if the occurrence of arrivals and the offer of service are strictly
according to schedule, a queue can be avoided. But in practice this does not
happen. In most cases the arrivals are the product of external factors. Therefore,
the best one can do is to describe the input process in terms of random variables
which can represent either the number arriving during a time interval or the time
interval between successive arrivals. If customers arrive in groups, their size can
be a random variable as well.

Service mechanism: the uncertainties involved in the service mechanism are
the number of servers, the number of customers getting served at any time, and
the duration and mode of service. Networks of queues consist of more than one
servers arranged in series and/or parallel. Random variables are used to represent
service times, and the number of servers, when appropriate. If service is provided
for customers in groups, their size can also be a random variable.

System capacity: at most how many customers can wait at a time in a
queueing system is a significant factor for consideration. If the waiting room is
large, one can assume that for all practical purposes, it is infinite. But our everyday
experience with the telephone systems tells us that the size of the buffer that
accommodates our call while waiting to get a free line is important as well.

Service discipline: all other factors regarding the rules of conduct of the queue
can be pooled under this heading. One of these is the rule followed by the server
in accepting customers for service. In this context, the rules such as First-Come,
First-Served (FCFS), Last-Come, First-Served (LCFS), and Random Selection for
Service (RS) are self-explanatory. In many situations customers in some classes get
priority in service over others. There are many other queue disciplines which have
been introduced for the efficient operation of computers and communication sys-
tems. Also, there are other factors of customer behavior such as balking, reneging,
and jockeying, that require consideration as well.

3.2. Classification of Systems

The following notation, known as Kendall’s notation , is widely used to describe
elementary queueing systems:

A/B/m/K/N /Z,

where

• A indicates the distribution of the interarrival times,

• B denotes the distribution of the service times,

• m is the number of servers,
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• K is the capacity of the system, that is the maximum number of customers
staying at the facility (sometimes in the queue),

• N denotes the number of sources,

• Z refers to the service discipline.

As an example of Kendall’s notation, the expression

M/G/1 - LCFS preemptive resume (PR)

describes an elementary queueing system with exponentially distributed inter-
arrival times, arbitrarily distributed service times, and a single server. The queue-
ing discipline is LCFS where a newly arriving job interrupts the job currently being
processed and replaces it in the server. The servicing of the job that was interrupted
is resumed only after all jobs that arrived after it have completed service.

M/G/1/K/N

describes a finite-source queueing system with exponentially distributed source
times, arbitrarily distributed service times, and a single server. There areN request
in the system and they are accepted for service iff the number of requests staying
at the server is less than K. The rejected customers return to the source and start
a new source time with the same distribution. It should be noted that as a special
case of this situation the M/G/1/N/N system could be considered. However, in
this case we use the traditional M/G/1//N notation, that is the missing letter, as
usual in this framework, means infinite capacity, and FCFS service rule.

It is natural to extend this notation to heterogeneous requests, too. The case
when we have different customers is denoted by →. So, the

~M/~G/1/K/N

denotes the above system with different arrival rates and service times.

4. Basic Formulas

This section is devoted to the most well-known formulas of queueing theory. The
selection is subjective, but I think these are the ones from which many others have
been derived.

4.1. Erlang’s Formulas
As we mentioned in the earlier section the whole theory started with a practical
problem. Erlang’s task can be formulated as follows: What fraction of the incoming
calls is lost because of the busy line at the telephone exchange office. Of course, the
answer is not so simple, since we first should know the inter-arrival and service time
distributions. After collecting data Erlang verified that the Poisson-process arrival
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and exponentially distributed service were appropriate mathematical assumptions.
He considered the M/M/n/n and M/M/n cases, that is the system where the
arriving calls are lost because all the servers are busy, and where the calls have to
wait for service, respectively. Assuming that the arrival intensity is λ, service rate
is µ he derived the famous formulas for loss and delay systems, called Erlang B
and C ones, respectively.

Denoting ρ = λ/µ, the steady state probability that an arriving call is lost can
be obtained in the following way

Pn =

ρn

n!
n∑

k=0

ρk

k!

= B(n, ρ),

where B(n, ρ) is the well-known Erlang B- formula, or loss formula. It can easily
be seen that the following recurrence relation is valid

B(n, ρ) =
ρB(n− 1, ρ)

n+ ρB(m− 1, ρ)
n = 2, 3, ...

B(1, ρ) =
ρ

1 + ρ
.

Similarly, by using the B-formula the steady state probability that an arriving
customer has to wait can be written as

C(n, ρ) =
nB(n, ρ)

n− ρ(1−B(n, ρ)
,

which is called Erlang C-formula, or Erlang’s delay formula.
It should be mentioned that the B-formula is insensitive to the service time

distribution, in other words it remains valid for any service time distribution with
mean 1/µ.

4.2. Little’s Law

Little’s law, Little’s result, or Little’s theorem is perhaps the most widely used
formula in queueing theory was published by J. Little [25] in 1961. It is simple
to state and intuitive, widely applicable, and depends only on weak assumptions
about the properties of the queueing system.

It says that the average number of customers in the system is equal to the
average arrival rate of customer to the system multiplied by the average system
time per customer.

Historically, Little’s law has been written as

L = λW
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and in this usage it must be remembered that W is defined as mean response time,
the mean time spent in the queue and at the server, and not just simply as the
mean time spent waiting to be served, L refers to the average number of customers
in the system and λ is the mean arrival rate. Little’s law can be applied when we
relate L to the average number of customers waiting to receive service, Lq and W
to the mean time spent waiting for service, Wq, that is another well-known form is

Lq = λWq.

The same applies also to the servicing aspect itself. In other words, Little’s law
may be applied individually to the different parts of a queueing facility, namely the
queue and the server.

It may be applied even more generally than we have shown here. For example,
it may be applied to separate parts of much larger queueing systems, such as
subsystems in a queueing network. In such a case, L should be defined with respect
to the number of customers in a subsystem and W with respect to the total time
in that subsystem. Little’s law may also refer to a specific class of customer in a
queueing system, or to subgroups of customers, and so on. Its range of applicability
is very wide indeed.

Finally, we comment on the amazing fact that the proof of Little’s law turns
out to be independent of

• specific assumptions regarding the arrival distribution A(t)

• specific assumptions regarding the service time distribution B(t)

• number of servers

• particular queueing discipline

Little’s law is important for three reasons:

• because it is so widely applicable (it requires only very weak assumptions),
it will be valuable to us in checking the consistency of measurement data

• for example, in studying computer systems we frequently will find that we
know two of the quantities related by Little’s law (say, the average number of
requests in a system and the throughput of that system) and desire to know
the third (the average system residence time, in this case)

• it is central to the algorithms for evaluating several queueing network models

Given a computer system, Little’s law can be applied at many different levels: to
a single resource, to a subsystem, or to the system as a whole. The key to success
is consistency: the definitions of population, throughput, and residence time must
be compatible with one another.

Over the past few years, it has become increasingly important in many fields of
applications. For more discussions on this topic one may read, for example Jewel
[19], Ramalhota-Amaral-Cochito [26], Wolf [36].
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4.3. Pollaczek-Khintchine Formulas
This section deals with formulas of an M/G/1 queueing system at which the cus-
tomers arrive according to a Poisson-process with parameter λ, the service time is
arbitrarily distributed, there is no restriction to the number of customers staying
in the system, and they are serviced according to the order of their arrivals, that
is the service discipline is FCFS. These formulas are treated almost every book on
queueing theory but the notation is quite different. Each author prefers his own
designation and as a consequence it is very difficult to find the proper form. We
make difference between the type of formulas, the mean value and transform ones.
Of course, the first ones are much easier to obtain. Independently of each other,
Pollaczek and Khintchine derived them in the period 1930-50.

Felix Pollaczek, 1892–1981 Alexander Y. Khintchine, 1894–1959

As usual we need some notations. In steady state let us denote by

• N number of customers in the system,

• P (z) the generating function of N , that is P (z) = E(zN ),

• B∗(s) =
∫∞
0 e−stdB(t) the Laplace-Stieltjes transform of the service time S,

• W ∗(s) the Laplace-Stieltjes transform of the waiting time in the system, or
response time T ,

• W ∗
q (s) the Laplace-Stieltjes transform of the waiting time in the queue Tq,

• C2
S = V ar(S)

E2(S) squared coefficient of variation of service time S,

• L = E(N), Lq = E(Nq) average number of customers in the system, queue,
respectively,
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• W = E(T ), Wq = E(Tq) mean waiting time in the system, in the queue,
respectively,

• ρ = λE(S).

Hence, the mean value formulas are as follows:

L = ρ+ ρ2 1 + C2
S

2(1− ρ)
,

Lq = ρ2 1 + C2
S

2(1− ρ)
,

or by using the Little’s law we have

W = E(S)(1 + ρ
1 + C2

S

2(1− ρ)
),

Wq = E(S)ρ
1 + C2

S

2(1− ρ)
.

The transform formulas or equations can be written as

P (z) =
(1− ρ)(z − 1)B∗(λ− λz)

z −B∗(λ− λz)
,

P (z) = W ∗(λ− λz),

W ∗(s) =
(1− ρ)sB∗(s)
s− λ(1 −B∗(s)) ,

W ∗
q (s) =

(1− ρ)s
s− λ(1 −B∗(s)) .

Hence, by applying the well-known properties of generating functions and Laplace-
Stieltjes transforms using repeated differentiation for the higher moments we get

E(N(N − 1) · · · (N − k + 1)) = λkE(T k),

which is nice generalization of Little’s formula for higher moments in FCFS case.

5. Hungarian Contributions to the Theory of Queues

In this section I would like to mention several Hungarian researchers without dis-
cussing their main results in details. The selection is subjective and it is based on
my information collected during my research activities.
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5.1. Lajos Takács and his Work

There is no doubt that he is the most well-known,reputed and celebrated Hungar-
ian in this field. In the second half of 1994, many scientific institutions (including
the Institute of Mathematical Statistics, Operations Research Society of America,
The Institute of Management Sciences, and Hungarian Academy of Sciences) cel-
ebrated his 70th birthday, which took place on August 21, 1994. In addition, a
special volume, Studies in Applied Probability (31A of Journal of Applied Proba-
bility, edited by J. Galambos and J. Gani), [12], appeared in the first half of 1994
honoring Professor Takács. Another paper, [7] was devoted to his 70th birthday
written by Dshalalow and Syski where we can read
" Because of his extraordinary accomplishments, Professor Takács is one of the
most celebrated contemporary probabilists. He has published over 200 papers and
books, many of which have had a huge impact on the contemporary theory of proba-
bility and stochastic processes. His numerous works are yet to be explored. Although
some people view Takács as a queueing theorist, it is just one of many areas of his
remarkable influence. This opinion about him is also because queueing theory (or,
as they say, just queueing) has become so overwhelmingly popular, and because
Takács is indisputably one of the greatest contributors to the theory who ever lived.
This may outshine his other contributions to the theory of probability, stochastic
processes, combinatorial analysis, and even physics. For instance, it is not widely
known that Takács was the first to introduce and study semi-Markov processes in
the early fifties and which he had been using even before 1954, perhaps one of the
most extraordinary achievements in the theory of stochastic processes in the second
half of the twentieth century.

In 1962 Takács published his Introduction to the Theory of Queues, a
masterpiece and, at the same time, one of the most widely cited monographs in
queueing. His other masterpiece, On Fluctuations of Sums of Random Vari-
ables, published in 1978 is less popular, but it undoubtedly deserves more atten-
tion. Due to his phenomenal diversity, Takács left traces in many areas of math-
ematics and probability, such as: queueing theory, combinatorial analysis, point
processes, random walks, branching processes, Markov processes, semi-Markov pro-
cesses, probability on groups, signal processes, statistics, fluctuation theory, sojourn
time problems in stochastic processes, ballot theorems, and random graphs. In spite
of his numerous commitments, Takács is still amazingly productive. In 1993 he was
elected a Foreign Member of the highly renowned Hungarian Academy of Sciences,
and recently he was awarded the prestigious John von Neumann Theory Prize by
the Operations Research Society of America and The Institute of Management Sci-
ences. Currently, he is a professor emeritus at Case Western Reserve University
in Cleveland, Ohio. "

Besides these I would like to draw your attention to his other 2 books Stochastic
Processes, Problems and Solutions [31] and Combinatorical Methods in the Theory
of Stochastic Processes [33]. Readers interested in his results and Bibliography are
referred to [7, 12]. Even the Wikipedia [38] devotes some pages to his works.

Reading the works of Takács we must admit that they require sound knowlegde
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Lajos Takács, 1924–

in mathematics. The methods he used in the proofs are too sophisticated for our
students in their BSc or MSc studies. In the following I would like to list some of
his formulas and equations I found very useful in teaching queueing theory.

As I wrote earlier the M/G/1 system is basic for other more complicated queue-
ing situations. In many problems occuring in operational research or computer
science, the higher moments of the involved random variables are very important,
for example, waiting time in the system T , or in the queue Tq, busy period of
the server B just to mention some. The Pollaczek-Khintchine transform formulas
enables us to get them by standard methods, even if the calculations are not easy.
I found the following Theorem in [1] pp. 202 stated

Takács Recurrence Theorem: Consider an M/G/1 queueing system in which
the (j + 1)th moments of service time S, that is E(Sj+1) exitst.
Then E(Tq), ..., E(T j

q ) also exist and

E(T k
q ) =

λ

1− ρ

k∑

i=1

(
k

i

)
E(Si+1)
(i + 1)

E(T k−i
q ), k = 1, 2, ...j,

where E(T 0
q ) = 1.

Hence, the moments E(T ), E(T 2), ..., E(T j) exit and

E(T k) =
k∑

i=0

(
k

i

)
E(Si)E(T k−i

q ), k = 1, 2, ...j.
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As a consequence we get

E(Tq) =
λE(S2)
2(1− ρ)

,

E(T 2
q ) = 2E2(Tq) +

λE(S3)
3(1− ρ)

,

E(T ) = E(Tq) + E(S),

E(T 2) = E(T 2
q ) +

E(S2)
1− ρ ,

from which the V ar(Tq), V ar(T ) can be obtained.

Another useful equation is the so-called Takács’ equation for the Laplace-
Stieljes transform G∗(s) of the busy period B. Takács proved that

G∗(s) = B∗(s+ λ− λG∗(s)).
By differentiating this equation with respect to s and as s tends to zero we have

E(B) =
E(S)
1− ρ ,

E(B2) =
E(S3)

(1− ρ)3
.

5.2. Present Contributors
To the best of my knowledge the following universities are the centre of education
and research on queueing related topics

• Eötvös Loránd University ( A. Benczúr, L. Lakatos, L. Szeidl )

• Budapest University of Technology and Economics ( L. Györfi, M. Telek, S.
Molnár )

• University of Debrecen ( J. Tomkó, M. Arató, B. Almási, A. Kuki, J. Sztrik,
and several PhD students )

At Debrecen University queueing theory is a mandatory part of BSc curriculum
in software engineering, computer engineering and business information manage-
ment. It is optional part of MSc in software engineering and the Doctoral School
of Informatics has a programme in this subject. Several printed and digital lec-
ture notes help students and web-based Java applets can be run to get the main
performance measures of the systems. Please visit to following link

http://irh.inf.unideb.hu/user/jsztrik/
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6. The ~G/M/r//N/FCFS system

Over the years I have been published around 140 papers on topics related to queue-
ing systems. In the following I would like to introduce the results of my paper On
the finite-source ~G/M/r/ queue [28] to which I have received 22 citations.

Requests arrive from a finite source of size N and are served by one of r(r ≤ N)
servers at a service facility according to a First-Come-First-Served (FCFS) disci-
pline. The service times of the requests are supposed to be identically and expo-
nentially distributed random variables with means 1/µ. After completing service,
request i returns to the source and stays there for a random time having general
distribution function Fi(x) with density fi(x). All of these random variables are
assumed to be independent of each other.

6.1. The mathematical model
Let the random variable v(t) denote the number of requests staying in the source
at time t and (α1(t), . . . , αv(t)(t)) indicate their indices ordered lexicographically.
Let us denote by (β1(t), . . . , βN−v(t)(t)) the indices of the requests waiting for the
service facility in the order of their arrival. Clearly the sets {α1(t), . . . , αv(t)(t)}
and {β1(t), . . . , βN−v(t)(t)} are disjoint.

Introduce the process

Y (t) = (α1(t), . . . , αv(t)(t);β1(t), . . . , βN−v(t)(t)).

The stochastic process (Y (t), t ≥ 0) is not Markovian unless the distribution func-
tions Fi(x) are exponential, i = 1, . . . , N .

Let us also introduce the supplementary variables ξαl(t) to denote the random
time that request αl(t) has been spending in the source until time t, l = 1, . . . , N .
Define

X(t) = (α1(t), . . . , αv(t)(t); ξα1(t), . . . , ξαv(t) (t);β1(t), . . . , βN−v(t)(t)).

Then process (X(t), t ≥ 0) exhibits the Markov property.
Let V N

k and CN
k denote the set of all variations and combinations of order k

of the integers 1, 2, . . . , N respectively, ordered lexicographically. Then the state
space of the process X(t) consist of the sets

(i1, . . . , ik;x1, . . . , xk; j1, . . . , jN−k), (i1, . . . , ik) ∈ CN
k ,

(j1, . . . , jN−k) ∈ V n
N−k, xi ∈ R+, i = 1, . . . , k, k = 0, . . . , N

Let Qi1,...,ik;j1,...,jN−k
(x1, . . . , xk; t) denote the probability that at time t the process

is in state (i1, . . . , ik;x1, . . . , xk; j1, . . . , jN−k) if k requests with indices (i1, . . . , ik)
have been staying in the source for times (x1, . . . , xk), respectively, while the rest
need service and their indices in order of arrival are j1, . . . , jN−k).

Let λi defined by 1/λi =
∫∞
0
xdFi(x). Then we have:
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Theorem 6.1. If 1/λi < ∞, i = 1, . . . , N , then the process (X(t), t ≥ 0) pos-
sesses a unique limiting (stationary) ergodic distribution independent of the initial
conditions, namely

Q0;j1,...,jN = lim
t→∞

Q0;j1,...,jN (t),

Qi1,...,ik;j1,...,jN−k
(x1, . . . , xk) = lim

t→∞
Qi1,...,ik;j1,...,jN−k

(x1, . . . , xk; t). (6.1)

Notice that X(t) belongs to the class of piecewise-linear Markov processes, subject
to discontinuous changes treated by [14] in detail. Our statement follows from the
theorem on page 211 of that monograph.

Let Qi1,...,ik,j1,...,jN−k
denote the steady state probability that requests with

indices (i1, . . . , ik) are in the source and the order of arrival of the rest to the
service facility is (j1, . . . , jN−k). Furthermore, denote by Qi1,...,ik

the steady state
probability that requests with indices (i1, . . . , ik) are staying at the source.
As it was proved in [28] that these probabilities can be expressed in the following
form

Qi1,...,ik
=

(N − k)!
r!rN−r−kµN−kλi1 , . . . , λik

CN , (6.2)

(i1, . . . , ik) ∈ CN
k , k = 0, 1, . . . , N − r.

Similarly,

Qi1,...,ik
=

1
µN−kλi1 . . . λik

CN (6.3)

(i1, . . . , ik) ∈ CN
k , k = N − r, . . . , N. (6.4)

Let Q̂k and P̂l denote the steady state probabilities that k requests are staying
in the source and l requests are at the service facility, respectively. Clearly

Qi1,...,iN = Q1,...,N = Q̂N = P̂0 Q̂k = P̂N−k.

It is easy to see that

Cn = Q̂nλ1 . . . λn and Q̂k =
∑

(i1,...,ik)∈CN
k

Qi1,...,ik
,

where Q̂N can be obtained with the aid of the norming condition
N∑

k=0

Q̂k = 1.

In the homogeneous case, when λi = λ, i = 1, . . . , N relations (6.2) and
(6.1) yield

Q̂k =
N !

k!r!rN−r−k

(
λ

µ

)N−k

Q̂N , for 0 ≤ k ≤ N − r,
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Q̂k =
(
N

k

)(
λ

µ

)N−k

Q̂n, for N − r ≤ k ≤ N.

Thus, the probability that k requests are not in the source is

P̂k =
(
N

k

)(
λ

µ

)k

P̂0, for 0 ≤ k ≤ r,

P̂k =
N !

(N − k)!r!rk−r

(
λ

µ

)k

P̂0, for r ≤ k ≤ N.

Before determining the main characteristics of the system we need one more the-
orem. In order to formulate it, we introduce some further notations. Let Q(i)(P (i))
denote the steady state probability that request i is in the source (at the service
facility) for i = 1, . . . , N . It is clear that the process (Y (t), t ≥ 0) is a Markov-
regenerative process with state space

⋃

(i1, . . . , ik) ∈ CN
k , (j1, . . . , jN−k) ∈ V N

N−k,
(i1, . . . , ik) ∩ (j1, . . . , jN−k) = 0,

k = 0, 1, . . . , N

{(i1, . . . , ik; j1, . . . , jN−k)}.

Let Hi be the event that request i is in the source and ZHi(t) its characteristic
function, that is

ZHi(t) =
{

1 if Y (t) ∈ Hi

0 otherwise

Then we have

Theorem 6.2.

lim
T→∞

1
T

∫ T

0

ZHi(t)dt =
1/λi

1/λi +W i + 1/µ
= Q(i) = 1− P (i),

where W i denotes the mean waiting time of request i.

The statement is a special case of a theorem concerning the expected sojourn time
for semi-Markov processes, (see [34] ).

Sometimes we need the long-run fraction of time the request i spends in the
source. This happens e.g., in the machine interference model. In that case for the
utilization of machine i we have

Ui = Q(i) =
n∑

k=1

∑

i∈(i1,...,ik)∈CN
k

Qi1,...,ik
.
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6.2. The main performance measures
(i) Utilizations

Utilizations can now be considered for individual servers or for the system as a
whole. The process (X(t), t ≥ 0) is assumed to be in equilibrium. Considering
the system as the whole, it will be empty only when there are no requests at
the service facility and will be busy at other times. As usual, using renewal-
theoretic arguments for the system utilization, that is the long-run fraction
of time when at least one server is busy, we have

U = 1− Q̂N and Q̂N =
Eη∗

Eη∗ + Eδ

where η∗ = min(η1, . . . , ηN ), random variable ηi denotes the source time
of request i, i = 1, . . . , N , and Nδ denotes the average busy period of the
system.
Thus the expected length of the busy period is given by

Eδ = Eη∗
1− Q̂N

Q̂N

.

In particular, if Fi(x) = 1− exp(−λix), i = 1, . . . , N , we get

Eδ =
1− Q̂N

Q̂N

1∑
λi
.

It is also easy to see that for the utilization of a given server, which is called
utilization in general, the following relation holds:

Us =
1
r

(
N∑

k=1

kP̂k + r

N∑

k=r+1

P̂k

)
=
r

r
,

where r denotes the mean number of busy servers.

(ii) Mean waiting times
By the virtue of Theorem 6.1 we obtain Q(i) = (1 + λiW i + λi/µ)−1. Conse-
quently, the average waiting time of request i is

W i = (1−Q(i))(λiQ
(i))−1 − 1/µ.

It follows that the mean sojourn time of request i, that is, the sum of waiting
and service times , can be obtained by

T i = W i + 1/µ = (1 −Q(i))(λiQ
(i))−1, for i = 1, . . . , N. (6.5)

Since
∑N

i=1(1 − Q(i)) = N , where N denotes the mean number of requests
staying at the service facility we have, by reordering and adding (6.5)

N∑

i=1

λiT iQ
(i) = N. (6.6)
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This is the Little’s formula for the finite source ~G/M/r queue. In particular,
if Fi(x) = F (x), i = 1, . . . , N , (6.6) can be written as λ(N − N)T = N , where
(N −N) is the expected number of requests staying in the source.
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