
Proceedings of the 8th International Conference on Applied Informatics
Eger, Hungary, January 27–30, 2010. Vol. 1. pp. 87–94.

Using Gaussian Processes for Variance
Reduction in Policy Gradient Algorithms*

Hunor Jakab, Lehel Csató

Babes Bolyai University

Abstract

Gradient based policy optimization algorithms suffer from high gradient
variance, this is usually the result of using Monte Carlo estimates of the Q-
value function in the gradient calculation. By replacing this estimate with
a function approximator on state-action space, the gradient variance can be
reduced significantly. In this paper we present a method for the training of
a Gaussian Process to approximate the action-value function which can be
used to replace the Monte Carlo estimation in the policy gradient evaluation.
An iterative formulation of the algorithm will be given for better suitability
with online learning.

1. Introduction

Gradient based policy optimization algorithms, like REINFORCE [17], Vanilla Pol-
icy Gradients, Natural Actor-Critic [11] have many advantages over traditional
value-function based methods when it comes to learning control policies of complex
systems, however the majority of these methods suffer from high gradient variance,
a result of using Monte Carlo estimates of the Q-value function in the calculation of
the gradient Qπ(x, a) ∼

(∑H
j=o γ

jrj

)
. By replacing this estimate with a function

approximation of the value-function on state-action space, the gradient variance
can be reduced significantly[15]. We present the training of a Gaussian Process
for the approximation of the action-value function Q(·, ·) ∼ GP (µq, kq) which can
be used to replace the Monte Carlo estimation in the policy gradient evaluation,
thereby reducing the gradient variance and quickening learning.

In section 2 we will give a short description of the Reinforcement Learning (RL)
problem and basic notation. In section 3 the idea of Policy Gradient methods will
be shortly described together with the use of value-function approximators. In

*The authors acknowledge for the financial support from The Sectoral Operational Programme
Human Resources Development, POSDRU 6/1.5/S/3 - “Doctoral studies: through science towards
society” and PNTCD II 11-039/2007.

87

88 H. Jakab, L. Csató

section 4 we will describe our approach of using GP regression for approximating
state-action value functions. The learning of control policies has to be performed
online, since the only available data from which we can draw conclusions is pro-
vided by the agent’s interaction with its environment. Therefore we will use an
iterative variant of Gaussian Process regression as described in [1, 10]. Section 5
will discuss the application of the GP estimator in conjunction with Policy Gradi-
ent estimation. At the gradient estimation stage we will choose between using the
full Monte Carlo estimates, the predicted Value obtained from the GP predictive
mean or a combination of these. We close the paper with a discussion in section 6.

2. Problem Setting

The (RL) problem can be modelled with a Markov Decision Process (MDP): an
MDP [9, 12] is a tuple M (S,A, P,R) where S is the set of states; A the set of
actions; P : S × A × S → [0, 1], P (s, a, s′) is the conditional probability of a
transition from state s to s′ when executing an action a; R : S× → R, a ∈ A,
R(s, a) denoting the immediate reward r when in state s. MDP s provide the
framework to solve the RL problem: the goal being the search for a policy π that
maximizes the expected cumulative discounted reward.

Jπ = Eπ

[∞∑

t=0

γtRst,at

]
(2.1)

where E[·] is the expected value for the policy π, 0 < γ < 1 is a discount rate.
The policy is a probability distribution of actions a over state s, denoted πθ(s, a)
and valid for all states s ∈ S. It is parameterized by the parameter vector θ the
elements of which will be modified during the learning process. The expression for
the cumulative reward on the right hand side of (2.1) is analytically tractable and
we can search for a policy that maximizes it in different ways.

3. Policy Gradients

Policy gradient (PG) algorithms optimize the parameters θ of a parametric policy,
where the optimization is being done with respect to the expected reward J(θ).
We thus need a good approximation to the policy gradient, as in equation (3.1)
with respect to the episodic reward R(τ) =

∑H−1
t=0 γtRat(st), and the update is

done based on the expression in (3.2) [11].

∇θJ(θ) =
∫
∇θpθ(τ)R(τ)dτ (3.1)

θi+1 = θi + αi∇θJ(θ) (3.2)

Using Gaussian Processes for Variance Reduction in Policy Gradient Algorithms 89

Here α is a learning rate, i is the current update step, and τ stands for a history
of states and controller outputs for an episode of length H .

τ = {(s0, a0), (s1, a1), . . . (sH , aH)} (3.3)

pθ(τ) from (3.4) is the state-distribution corresponding to an episode starting
from an arbitrary state.1

pθ(τ) = p(s0)
H−1∏

t=0

π(at|st)p(st+1|st, at) (3.4)

Likelihood ratio methods [14] provide a good way of expressing the gradient in
a form that doesn’t depend on the actual state-transition probabilities and so can
be easily approximated. Using the episodic state distribution from (3.4) we can
calculate the gradient from (3.1) by using the likelihood ratio trick, and following
the derivation from [16].

The gradient is expressed as:

∇θJ(θ) = E

[
H−1∑

t=0

∇θ log π(at|st)R(τ)

]
(3.5)

The advantage in expressing the gradient as above lies in the fact that it can be
approximated via averaging over a number of controller output histories [17]. The
term R(τ) is in fact the Monte Carlo estimation of Q(st, at) the value function
over state-action space. Although R(τ) is an unbiased estimator of the true Q-
value function, it has high variance however it can be replaced with a function
approximator. In case the function approximator and policy parameterization fulfill
the compatibility conditions from [15] the approximated function can be viewed
as the approximation of the advantage function, which is the difference between
the state-action and state value functions. In this paper we use Non-parametric
Gaussian Processes2 to approximate the Q-value function: Q(·, ·) ∼ GP (µq, kq)

4. Online GPR for Value-function approximation

Different approaches of using Gaussian Processes for the Value-function approxi-
mation problem can already be found in the literature. In [8, 6, 7, 5] a generative
model is being used to express the value function in a one-step TD-like formulation
and perform regression based on this model on the individual returns. In [4] the
transition dynamics of the MDP are also estimated and so the Value function can
be completely reevaluated in a Dynamic Programming manner at each episode.
We choose a simpler method of performing Gaussian Process Regression using the

1This way of expressing the state distribution is only possible if the environment is Markovian.
Otherwise the joint probability could not be written as the product of the individual probabilities

2The compatibility conditions can be fulfilled by using a kernel composed from a regular state-
action kernel and a fisher kernel, and parameterizing the policy accordingly [7]

90 H. Jakab, L. Csató

Monte Carlo returns as noisy targets and the visited state-action pairs as support
points. At the gradient estimation step we combine the Q-values predicted by our
trained GP and the actual Monte Carlo returns to obtain a hybrid learning algo-
rithm. Let us consider an episode τ consisting of (st, at)t=1,H state-action pairs.
For each of these state-action pairs we can calculate the Monte Carlo estimation of
the Q-value function based on the sum of discounted rewards until the end of the
episode:

Q̂(st, at) =
H−t∑

i=0

(
γiR(st+i, at+i)

)
(4.1)

Let us denote this value for the state-action pair at time t with Qt. We consider
these values as noisy observations of the true state-action value function which in
our case is the latent function f(., .) modelled by the Gaussian Process GP (µq, kq).

Qt = f(st, at) + ǫs ǫs ∼ N(0, σ2)

The regression is performed directly in function space with prior mean and
covariance:

E [f(s, a)] = µq(s, a) = 0

Cov(f(s, a), f(s′, a′)) = kq ((s, a), (s′, a′))

Here kq(., .) is the kernel function which operates on state-action pairs, and
gives the element of the kernel matrix Kq. Since the arguments of the kernel
function are state-action pairs it makes sense to construct it from the composition
of two kernel functions which appropriately capture the covariance properties of
states and actions respectively as suggested in [6]. Suppose we have a set D of
state-action pairs and the corresponding noisy measurements which constitute our
support points: D = {(st, at)},Q̂ = {Q̂t}; t = 1, n; These points have a joint Gaus-
sian distribution with mean 0 and covariance matrix Kn

q + Σn; Given a new data
point xn+1 = (sn+1, an+1) and denoting kn+1 = [kq(x1, xn+1), . . . , kq(xn, xn+1)],
the joint distribution of the prediction and the target values (4.2), as well as the
predictive mean (4.3) and variance (4.4) for the new data-point (sn+1, an+1) con-
ditioned on the support points can be exactly calculated [13]:

[
Q̂
fn+1

]
∼ N

(
0,
[
Kn

q + Σn kn+1

kT
n+1 kq (xn+1,))

])
(4.2)

fn+1|Q̂, D ∼ N (µn+1, cov(fn+1)) (4.3)
E[fn+1] = µn+1 = kn+1αn (4.4)

cov(fn+1, fn+1) = kq (xn+1, xn+1)− kn+1CnkT
n+1 (4.5)

αn and cn are the parameters of the GP and have the following form:

αn = [Kn
q + Σn]−1Q̂ Cn+1 = [Kn

q + Σn]−1 (4.6)

Using Gaussian Processes for Variance Reduction in Policy Gradient Algorithms 91

The inversion of the n× n kernel matrix is computationally demanding, moreover
the size of the matrix increases quadratically with the number of data-points. Be-
cause the Policy Gradient algorithm uses data acquired through interaction with
the process environment we cannot batch-process. Therefore a suitable online ver-
sion of the GP regression must be used to calculate the inverse matrix in an iterative
way each time a new data-point is added to the set of support points D.

4.1. Online learning
We can update the parameters α & C of the mean and covariance functions of the
Gaussian process iteratively each time a new point {(sn+1, an+1), Q̂n+1} is added
to the set of Support Points, by combining the likelihood of the new data-point
and the Gaussian Prior from the previous step. This method is described in [3] for
the generalized linear models with arbitrary likelihood functions.

αn+1 = αn + qn+1sn+1 (4.7)
Cn+1 = Cn + rn+1sn+1s

T
n+1 (4.8)

sn+1 = CnkT
n+1 + en+1 (4.9)

en+1 = [0, 0, . . . , 1]TM1×(n+1)
(4.10)

Fortunately in the case of regression with Gaussian noise the resulting posterior
is analytically tractable, and qn+1, rn+1 can be given exactly. For this first we need
the marginal predictive distribution for the new data-point which is a Gaussian with
mean µn+1 given by (4.4) and variance σ2

n+1 given by (4.5). Than by calculating
the first and second derivatives of the average likelihood with respect to the mean
and setting them to 0 we get:

qn+1 =
Q̂n+1 − µn+1

σ(sn+1)2 + σ2
n+1

and rn+1 = − 1
σ(sn+1)2 + σ2

n+1

(4.11)

The hyper-parameters of the Gaussian Process can be optimized with the help
of evidence maximization [13].

5. Gradient Estimation

Using our GP function approximator we can now replace the Monte Carlo estima-
tion of the Q-values in the policy gradient formula (3.5). We can choose to use
solely the GP predicted mean instead of the term R(τ) or we can combine an ar-
bitrary number immediate returns from the episode with the GP prediction which
we will call m-step q-value.

Qm(st, at) =
m−1∑

i=0

γiR(st+i, at+i) + γmE[f(st+m, at+m)] (5.1)

92 H. Jakab, L. Csató

Where the E{f(st+m, at+m)} is given by equation (4.4). If m is grater than the
number of time-steps in the respective episode than the full Monte Carlo esti-
mate from (4.1) is used. By choosing m = 0 or m = H we get the pure GP
prediction-based version or the REINFORCE version of the policy gradient algo-
rithm respectively. The formula for the gradient estimate then becomes :

∇θJ(θ) = E

[
H−1∑

t=0

∇θ log π(at|st)Qm(st, at)

]
(5.2)

In Algorithm 1 we can see a description of the above discussed method in an
algorithmic form.

6. Discussion

We have described a way of approximating state-action value functions using a
Gaussian Process as a function approximator to reduce the variance in Policy Gra-
dient algorithms. Unlike in [8] where a generative model based on the idea of
TD is used to approximate the value function, we performed regression on the
Monte Carlo returns without bootstrapping. This makes the approximation inde-
pendent from the Markov assumption. Although the formulation of the episodic
state-distribution (3.4) in the gradient estimation assumes that the environment
is markovian, in our opinion the algorithm can still benefit from the nature of the
state-action value function approximation.

One major obstacle in efficiently using the described algorithm in RL problems
is the computational complexity of the GP prediction which increases exponen-
tially with the number of training points. This could be avoided by extending the
algorithm with a sparsification mechanism [2]. The procedure could be further

Using Gaussian Processes for Variance Reduction in Policy Gradient Algorithms 93

enhanced by using the predictive variance of the GP to influence the search direc-
tions of the Policy Gradient algorithm. These could be the major steps of future
research.

References

[1] L. Csató. Gaussian Processes – Iterative Sparse Approximation. PhD thesis, Neural
Computing Research Group, March 2002. URL www.ncrg.aston.ac.uk/Papers.

[2] L. Csató and M. Opper. Sparse representation for Gaussian process models. In NIPS,
volume 13, pages 444–450. The MIT Press, 2001.

[3] L. Csató, E. Fokoué, M. Opper, B. Schottky, and O. Winther. Efficient approaches
to Gaussian process classification. In NIPS, volume 12, pages 251–257. The MIT
Press, 2000.

[4] M. P. Deisenroth, C. E. Rasmussen, and J. Peters. Gaussian process dynamic pro-
gramming. Neurocomputing, 72(7-9):1508–1524, 2009. ISSN 0925-2312.

[5] Y. Engel, S. Mannor, and R. Meir. Bayes meets Bellman: The Gaussian process ap-
proach to temporal difference learning. In Proc. of the 20th International Conference
on Machine Learning, pages 154–161, 2003.

[6] Y. Engel, S. Mannor, and R. Meir. Reinforcement learning with Gaussian processes.
In ICML ’05: Proceedings of the 22nd international conference on Machine learning,
pages 201–208, New York, NY, USA, 2005. ACM.

[7] M. Ghavamzadeh and Y. Engel. Bayesian actor-critic algorithms. In ICML ’07:
Proceedings of the 24th international conference on Machine learning, pages 297–
304, New York, NY, USA, 2007a. ACM. ISBN 978-1-59593-793-3.

[8] M. Ghavamzadeh and Y. Engel. Bayesian policy gradient algorithms. In B. Schölkopf,
J. Platt, and T. Hoffman, editors, NIPS ’07: Advances in Neural Information Pro-
cessing Systems 19, pages 457–464, Cambridge, MA, 2007b. MIT Press.

[9] L. P. Kaelbling, M. L. Littman, and A. W. Moore. Reinforcement learning: A survey.
Journal of Artificial Intelligence Research, 4:237–285, 1996.

[10] M. Opper. Online versus offline learning from random examples: General results.
Phys. Rev. Lett., 77(22):4671–4674, 1996.

[11] J. Peters and S. Schaal. Policy gradient methods for robotics. In IROS, pages 2219–
2225. IEEE, 2006.

[12] M. L. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Program-
ming. John Wiley & Sons, Inc., New York, NY, 1994.

[13] C. E. Rasmussen and C. Williams. Gaussian Processes for Machine Learning. MIT
Press, 2006.

[14] T. Rückstieß, M. Felder, and J. Schmidhuber. State-dependent exploration for policy
gradient methods. In ECML/PKDD, pages 234–249, 2008.

[15] R. S. Sutton, D. A. McAllester, S. P. Singh, and Y. Mansour. Policy gradient methods
for reinforcement learning with function approximation. In S. A. Solla, T. K. Leen,
and K.-R. Müller, editors, NIPS, pages 1057–1063, 1999.

94 H. Jakab, L. Csató

[16] D. Wierstra, A. Foerster, J. Peters, and J. Schmidhuber. Solving deep memory
pomdps with recurrent policy gradients. In Proceedings of the International Confer-
ence on Artificial Neural Networks (ICANN), 2007.

[17] R. J. Williams. Simple statistical gradient-following algorithms for connectionist
reinforcement learning. Machine Learning, 8:229–256, 1992.

Hunor Jakab, Lehel Csató
Mihail Kogalniceanu str. 1
Cluj Napoca
Romania

