
Proceedings of the 8th International Conference on Applied Informatics
Eger, Hungary, January 27–30, 2010. Vol. 1. pp. 387–395.

Intuiting Mathematics from Computer
Visualizations*

Szilárd András

Babeş-Bolyai University, Cluj Napoca, Romania
e-mail: andraszk@yahoo.com

Abstract

In this paper we investigate some possible applications of the computers
in teaching mathematics. Our main goal is to illustrate how mathematical
intuition and conceptualization can be supported by the computer. In the
first example we use a simple mathematical model of a single product market
in order to formulate and to study the stability of a fixed point for a real
function f : [a, b] → [a, b]. In the second part we use a simplistic mathematical
model of the labor market in order to study the properties of stochastic
matrices. Both examples were used in an introductory course of dynamical
systems for computer science students for several years.
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1. Introduction

The visualization of mathematical objects and phenomenons in the computer era
became a very powerful tool in teaching mathematics and it is intensively studied
from several viewpoints (see [7], [3], [8], [2], [4], [9]). In this paper we illustrate how
mathematical intuition, conceptualization and abstractization can be supported
by computer visualization. In our examples the mathematical models and the
computer visualizations are used as a foundation for an inquiry based approach
and the main target is the abstractization process. We used these examples with
upper secondary students (17-18 years old) and computer science students (19-20
years old) in the framework of an introductory course to dynamical systems. The
main activities were organized as lab experiments (on computers) and the role
of the course was just to summarize and structure the observations made by the
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students. The practice shows that students are able to rediscover and formulate
mathematical theorems (such as the Perron-Frobenius theorem) on their own.

2. Examples

Problem 2.1 (Single product market). Study the demand and the supply level
for a single product if we assume the following

• there is a maximum level kd for the demand;

• the difference between the maximum level and the actual level is directly
proportional to the actual price;

• there is a minimal level ks for supply;

• the difference between the actual supply and the minimal supply is directly
proportional with the former price.

If we denote by D(n) the demand level in the nth period, by S(n) the corresponding
supply level and by p(n) the price, then due to our assumptions we have

D(n) = −cdp(n) + kd (2.1)

S(n+ 1) = csp(n) + ks, (2.2)

hence in the equilibrium state (when the supply equals the demand) we have S(n) =
D(n), for n ≥ 1. This implies

p(n+ 1) = A · p(n) +B, n ≥ 1,

where A = − cs

cd
és B = kd−ks

cd
.

Figure 1: Stability and instability of the price

We are interested in the following questions:

• Is there any stable state, when the price is constant?



Intuiting Mathematics from Computer Visualizations 389

• What kind of typical behaviors can have such a system on a long time period?
Is it predictable?

• What kind of typical behaviors can appear in general when p(n+1) = f(p(n)),
where f : [a, b]→ [a, b] is a real function? What are the properties of f which
guarantees these behaviors?

By using the cobweb method to visualize the terms of the sequence (p(n))n≥0 we
obtain three typical cases: asymptotic stability (the sequence p(n) converges to the
fixed point), instability (the fixed point is a repelling one) and periodicity (for each
initial value p(1), the sequence p(n) is periodic).

Figure 2: Stable but not asymptotically stable orbits

With a little experimentation (using a Matlab GUI, or a Flash animation) the
students can explore these typical behaviors and they realize that these can be
characterized by the slope of the line y = Ax + B. This is very helpful in treating
the general case. Using a computer simulation it is obvious to realize that in general
we need the tangent to the graph of the function f in the fixed point (x∗) and the
behavior near this fixed point is determined by the slope of this tangent line, namely
f ′(x∗). More precisely if |f ′(x∗)| < 1, the sequence (p(n))n≥1 converges to the fixed
point x∗ while if |f ′(x∗)| > 1 the fixed point is repelling. In both cases the fixed
point is called hyperbolic.

Figure 3: Asymptotically stable and unstable hyperbolic fixed
points
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The nonhyperbolic cases can be explored separately. If f ′(x∗) = 1 and f ′′(x∗) 6=
0 we can observe that the fixed point behaves like an unstable fixed point at one
side and at the other side it behaves like an asymptotically stable fixed point, this
motivates the definition of the semistable fixed point and shows that it is necessary
to have f ′′(x∗) = 0 to have stability or instability.

Figure 4: Semistable fixed points

Figure 5: Unstable and stable fixed points in the case f ′(x∗) = 1
and f ′′(x∗) = 0

By examining the graphs in this case we can remark that asymptotic stability
occurs when f ′′ decreases near x∗ and instability occurs when f ′′ increases. But
locally these facts are equivalent with f ′′′(x∗) < 0 respectively f ′′′(x∗) > 0. This
shows that the students can formulate a first theorem about the characterization of
the fixed points. Moreover it is absolutely clear, that in the proof of this theorem
we need a local representation of the function f using the values of its derivatives
in x∗. Hence the main tool in the proof is the Taylor expansion around x∗. Based
on the above reasoning we have the following theorems (see [6],[5],[10],[1]):

Theorem 2.2. If x∗ is a fixed point of the function f : R → R and f is continu-
ously differentiable in the neighborhood of x∗, then we have the following properties:

a) if |f ′(x∗)| < 1, then x∗ is an asymptotically stable fixed point;

b) if |f ′(x∗)| > 1, then x∗ is unstable.
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Theorem 2.3. If x∗ is a fixed point of the function f : R → R, f ′(x) = 1 and
f ′′′ is a continuous function in a neighborhood of x∗ then we have the following
properties:

a) If f ′′(x∗) 6= 0, then x∗ is unstable (semistable).

b) If f ′′(x∗) = 0 and f ′′′(x∗) > 0, then x∗ is unstable.

c) If f ′′(x∗) = 0 and f ′′′(x∗) < 0, then x∗ is asymptotically stable.

The formal proofs can be found in [6], [1] and the key steps are in fact the
formal descriptions of the observed phenomenons. By analyzing the proofs too,
we can observe that almost the same argument can be applied to prove also the
general version of the previous theorems, which was published in [5].

In the above cases the convergent sequences were always monotonic. If we
analyze some examples where f ′(x∗) = −1, we can observe that the sequences can
converge without being monotonic, but in any cases we can split these sequences
into two monotonic subsequences. More precisely in this case we need to study
the function g = f ◦ f. By applying this idea and the previous theorems we can
easily obtain the following theorem from [5] and with some computations we can
also obtain the main theorem of [10].

Figure 6: Stability and instability when f ′(x∗) = −1

Theorem 2.4 ([5]). If x∗ is a fixed point of the function f : R → R, f is three
time continuously differentiable in a neighbourhood of x∗, f ′(x∗) = −1, then we
have the following properties

a) If −f ′′′(x∗)− 3
2 (f ′′(x∗))2 < 0, then x∗ is asymptotically stable.

b) If −f ′′′(x∗)− 3
2 (f ′′(x∗))2 > 0, then x∗ is unstable.

Problem 2.5 (Labor market model). Study the population of a region under the
following assumptions:

• the population is divided into three subcategories:

– those whose job is related to their qualification;
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– those whose job is not related to their qualification;

– unemployed;

• in each year the sij proportion of the ith category moves to the jth category.

Denote by an, bn and cn the number of individuals in the three aforementioned
categories at the end of the nth year. From the given assumptions we can obtain
the following equations:

an+1 =s11an + s21bn + s31cn

bn+1 =s12an + s22bn + s32cn

cn+1 =s13an + s23bn + s33cn.

If we use the matrix

S =



s11 s21 s31
s12 s22 s32
s13 s23 s33


 (2.3)

and the vectors un = [an bn cn]t, n ≥ 1 the recurrence can be written in the form

un+1 = S · un.

From this relation we obtain un+1 = Sn · u1, hence the long term behavior of the
population depends on the exponents of S.

A few natural questions regarding the evolution of this population:

• For a fixed S is there any equilibrium population (in which the size of the
categories remains constant)?

• Is there any structurally stable population (in which the relative size of the
categories remains constant)?

• Is there any pattern in the long term evolution of this population?

• Is there any possibility to reduce the size of the unemployment category?

Figure 7 illustrates the relative sizes of the categories for 1, 5, 10, 15, 20, 25. Using
a simulation which calculates and illustrates these terms for randomly generated
initial values we can see that the sequence converges and the convergence is very
fast. Moreover the limit of the sequence (un)n≥0 is a solution of the equation
u = S · u. This shows, that 1 is an eigenvalue for S, the corresponding eigenvector
has positive components and all the other eigenvalues satisfy the inequality |λ| < 1.
This is in fact the Perron-Frobenius theorem for stochastic matrices:

Theorem 2.6. If S ∈ Mn(R) has positive elements and the sum of elements in
each column is 1, then

• 1 is a simple eigenvalue of S and for any other eigenvalue λ the inequality
|λ| < 1 holds;
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• the components of the eigenvector corresponding to the eigenvalue 1 have the
same sign;

• the sequence Sn ·u0 converges to u∗, where u∗ is an eigenvector corresponding
to the eigenvalue 1 and the sum of the components in u∗ is the same as in
u0.
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Figure 7: Convergence of iterates for a stochastic matrix

3. Concluding remarks

• In both examples we used the model to support the intuition, the under-
standing and the formalization of mathematical theorems. Although the the-
orems are not included in the regular curricula (for upper secondary school),
these examples can be used in order to help students in understanding and
deepening the corresponding mathematical notions. In many countries the
mathematics curriculum and the final examination criteria does not include
modelling skills, they focus more on problem solving and abstract mathemat-
ical notions, theorems. In such a framework the modelling activities can (and
must) be used to facilitate the understanding of mathematical phenomenons.

• The main importance of this approach is that the students can formulate
abstract theorems based on their own experiments, they can understand the
key steps of the proofs based on computer visualization. In performing this
inquiry based approach the use of a computer is of crucial importance. In
the first example most of the students can formulate theorems 2.2 and 2.3
while in the second example most students can formulate the whole theorem.
Without computer this is not so palpable (especially in the second case),
because the volume of the calculation is too big.

• Both examples show that if we use an inquiry based approach (specially in
secondary school and upper secondary school) from very natural questions
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we can arrive to deep mathematics (remember what Dean Schlicter said:
Go down deep enough into anything and you will find mathematics) which
formally exceeds the existing curricula. If we want to train our students
in using/maipulating/creating high complexity reasoning, then the curricula
should be more flexible in terms of the content and much more focused on
competencies, processes.

• The use of computer visualizations can attract a wider audience, but in order
to prepare them the teaching staff needs a special training (in creating flash
animations, interactive graphical user interfaces), hence the teacher training
curricula must include special topics on realizing visualizations, animations.
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