
Proceedings of the 8th International Conference on Applied Informatics
Eger, Hungary, January 27–30, 2010. Vol. 1. pp. 345–352.

Data Protection on Progress Databases and
Progress 4GL Environment

Attila Hadházi

1. Introduction

This paper describes a protection mechanism implemented on a Progress RDBMS
and in Progress 4GL development environment. The method described below is
intended to protect the stored data at a level that to not allow direct access to
the database, but only using the application functionality and its user interface.
The method ensures that even the database administrator has no direct access
to the database, despite the fact that for application upgrade and recompilation
reasons higher privileges are needed. The paper only deals with protection against
unauthorized access, and does not deal with protection against physical damage of
the database.

Due to the internal structure of Progress databases, the simple possession of
the files is not sufficient to retrieve the data, this is why the paper does not deal
with the protection of the database files themselves, since they are protected on
operating system level. This paper describes the protection against intrusion to
the database, based on the information related to the schema of the database or
to the application accessing the database.

The first part of the document describes the tools provided by the Progress
RDBMS - from the point of view of the database itself and from the point of view
of the application which access the database.

The second part of the document details the areas which were needed to be
covered for protecting the database and application in a real environment - a med-
ication database used in an integrated Health-Care Information System.

The third part describes the steps of technical and organizational implementa-
tion of the security system. In particular, it was important to establish a mech-
anism, which is used in a real environment, having regard to the development
workflow, as well as the upgrade process performed by clients of the live system.

Finally, there are discussed the used encrypting algorithms as well as the ways
of possible further improvements of the presented security mechanism.

345



346 A. Hadházi

2. The features of the Progress environment

The Progress RDBMS is a product of the Progress company, being a stable and
relatively inexpensive product on database management systems’ market. At the
same time contains a 4GL development environment, which allows a much more
effective application development than a simple SQL interface.

The database access can be protected on multiple levels. Given the close rela-
tionship between a database of a defined schema and the 4GL program which runs
on the database, the Progress database protection has to cover the protection of
the actual data files against unauthorized access and protection of the associated
application as well.

2.1. Protection of the Database

The Progress database has a protection mechanism covering several areas:

• The restriction and authentication of database connection

The connection to the database occurs through the servers serving the Prog-
ress 4GL clients or through JDBC, ODBC drivers. The system administrator
can set which kind of connections are allowed.

The Progress stores the registered users in a user table in the database. In
cases where users are created in the database, the anonymous access to the
database can be disabled. There can be assigned passwords to the users which
are stored in the database using a 16 characters length one-way encryption.
Connecting to the database does not mean that the user can automatically
access the database schema and the data stored in the database. Some users
can be endowed with a database administrator role. The additional users and
schema access rights can be set only by these administrators.

• Protection of the database schema

After the 4GL-side connection to the database there is started a Progress
delivered application, through which 4GL programs can be edited and run,
and – owning the appropriate permissions – is possible to review and edit the
schema.

Protection of the database schema means that only certain users can adjust
tables, fields and indexes stored in the schema. The individual tables (includ-
ing itself the table containing the schema definitions can be “frozen”. Then,
the schema can not be changed.

After connecting to the database through JDBC drivers we have a user inter-
face where SQL commands can be invoked. In this case, using the GRANT and
REVOKE commands can be set the schema access permissions in the same way as
for other databases.



Data Protection on Progress Databases and Progress 4GL Environment 347

2.2. Protection of the Application
This section presents the opportunities of 4GL applications protection.

The 4GL source files has to be compiled before runtime. Before compilation the
compiler has to connect to the database, on which the program will run. During
compilation an intermediate code is produced which is called r-code (runtime code).
To run this code just database connection licenses are needed, and no developer
licenses.

Thus, running an application is performed in two steps, and based on this the
protection of the application has two aspects:

◦ compilation and creation of r-code - the compile-time protection.
◦ the actual run - the run-time protection

• Compile-time protection:
To each table and each field of them there are defined different access modes,
and to each access mode there can be attached individual users or user lists
(using eve pattern matching). The following access modes are available: read,
write, create, delete, data load and data dump. The first four modes does
not apply directly to the data content but to the definition of the data.
For example, if someone does not have ’READ’ access to a table, then he/she
simply do not even knows what kind of fields are in that table and is not able
to compile a program against that table. Since every data access in fact is
a piece of 4GL program, without the appropriate privileges, corresponding
data cannot be accessed.

• Run-time protection:
Due to performance reasons, the privileges associated with the schema are
checked only at compile time, and are not rechecked when executing the r-
code. When the r-code is created by the compiler, in the r-code there is stored
a CRC value as well, which is characteristic to the given database schema.
That’s why a program compiled against a database with a given schema
can be run on another database having the same schema - even though the
security settings of the two databases differ.
To solve this security issue, Progress provides the possibility to attach a
database authentication key to each database (DBAUTHKEY), and at com-
pile time this DBAUTHKEY is added to the r-code. This r-code can be
replaced or added to the r-code afterwards as well. If a database has such a
DBAUTHKEY attached, then only those r-codes can be run against it, which
contains the same authentication key.
Further CRC code is the r-code specific CRC, which should not be confused
with the previously described CRC-s. This is unique and can be interrogated
from the r-code. Using this code, an application can store all the valid r-code
filenames and corresponding CRC-s, and in this way can control the programs
which are run against the database.



348 A. Hadházi

3. The specific frame of the deployment and usage
of the MedSolution drug database

The International System House Ltd. provides the drug database to the MedSolu-
tion Hospital Information System from an external source. There was a contracted
condition to ISH to protect this database in such a way, that the content of it to
be accessible by the customers only using the application, and in no other way.

During designing the protection system, the following issues had to be be con-
sidered:
• It is possible that the hospital administrators owns Progress developer li-

censes.
• It is possible to embed new functions into the application even by the admin-

istrators with medium MedSolution application level knowledge and Progress
4GL knowledge.
• The compilation process is performed on clients’ servers and source code is

distributed to the client sites using a special encryption provided by Progress.
• The application is used from Windows fat clients and Unix terminal based

thin clients.
• The protection system should fit in the supplier’s development and deploy-

ment processes.
• Uniform system has to be used which is applied at all customer sites.
• Ensure fast drug database upgrade.

4. The applied data protection system

4.1. The protection of database and application

• The database access protection and authentication

The medication database has to be connected for two reasons:

a. To recompile the application after upgrades
b. To access the drug database through the application functionality

This usage is more restricted than the access to other tables, where it is
needed sometime to perform ad-hoc queries. To handle this on given sites the
system administrators have development licenses and access to the schema of
the tables. To restrict direct access to drug database tables (around a dozen
tables) these were put in a separate physical database. There were only two
users defined in the database, a ’dba’ and a ’user’. The dba user has access
to the schema (so can compile programs against it), while the plain user is
able only to connect to the database. Of course, none of these two users
password is not known by customers, but were implemented in the compiler
and installer tool, and the application itself. In this way direct connection to
the database was disabled.



Data Protection on Progress Databases and Progress 4GL Environment 349

When running the application each user logs in with his own account and
authenticates. After successful authentication, the application connects and
authenticates to the separate drug database with the ’user’ account. This
allows running the already compiled r-codes.

• The protection of the schema

In the absence of appropriate passwords the database schema can not be
accessed. But during upgrades the schema information is provided in plain
text files. It would be possible that having a full schema upgrade these files
to be accessed at customer sites. Having the schema a database can be built
and r-codes compliant with the drug database can be produced.

To avoid this, the schema text files are deployed with a bit level XOR cipher-
ing (CBC - cipherblock chaining mode) having a relatively long cipher key.
The decoding algorithm together with the key were embedded into the in-
staller application. During installation the installer decodes the schema text
file, connects with dba access to the drug database and applies the schema
changes to the database. During installation, the decoded data content is not
accessible.

• The protection of the r-codes

The drug database can be accessed with ’dba’ access by the compiler applica-
tion as well. Since the application is enough freely configurable, it is possible
that somebody writes a program, which for example lists the content of the
tables, compiles it to r-code and configures this r-code in the menu system of
the application, and then runs it. To write such a program is enough to know
the name of the different tables. To avoid this, the compiler application was
enhanced in the following way:

◦ In the compiler there are included all r-codes’ name which accesses the
drug database.
◦ To avoid the case that somebody overwrites a registered program with

his own code, the r-code CRC-s of the registered programs were added
to the compiler as well. The r-code CRC can be extracted from the
r-code with a Progress statement. The compiler performs the validation
of a program in the following steps:

i. The compiler is normally not connected to the drug database, and
the not registered programs are compiled only against the other
tables of the database of the information system.

ii. Before the deployment of a registered program there is added to it a
header macro. Activating it the registered program can be compiled
without any connection to the drug database, of course these r-codes
has no real functionality at all.

iii. The r-code CRC of these programs is extracted from the r-code file,
and compared to the value stored in the compiler.



350 A. Hadházi

iv. If the values are matching the compiler connects as ’dba’ to the drug
database and compiles the program deactivating the header macro
first. In this way a ’real’ r-code is produced.

◦ So the compiler does not check the CRC of the ’real’ programs, but only
the CRC of such protected ones, and in this way real compilation against
the drug database occurs only in the case of registered programs having
valid CRC-s. Using the presented mechanism it is allowed to compile
only those programs against the drug database which were deployed by
the ISH development staff.

• The protection of drug data upgrades

◦ The drug database tables were received initially in plain CSV files and
it was needed to be loaded using the application. So, these files had to
be coded in such a way that only the application could decode them.
Unfortunately the size of drug database is more than 70 MB and the
coding used at schema text files in this case would take too much time.
The solution of the transfer was the usage of binary files which is another
feature of Progress RDBMS:

i. Binary export and import is allowed only to one single table at a
time, so before migration the structured tables were moved in a
migration table.

ii. This table is exported in binary format which is deployed to the
customers.

iii. The application at customer sites loads the binary file in the mi-
gration table and rebuilds the new version of the structured drug
database.

◦ This process can be performed only if the schema at customer site is the
same as the structure existing at the distribution site. To ensure this a
version mechanism of the loader program is implemented. If the binary
file version does not match with the version of application at client sites,
first the application has to be upgraded.

• Usage of encrypted columns

Unfortunately this feature known in Oracle databases cannot be applied here.

4.2. The changes related to the workflow of development

During the implementation of the security mechanism it had to be ensured that the
preparation of registered programs etc. will not create a significant overhead on
the development process. Therefore, the following changes of development process
were applied and new development tools were used:
• On the development versions where the access to the drug database is more

often needed, the security mechanism was deactivated.
• The schema upgrade files are encrypted with a specific tool in one step.



Data Protection on Progress Databases and Progress 4GL Environment 351

• The registration of the specific program files was performed with another
tool, which:
◦ Adds to the source program the header macro which ensures the pro-

tected and ’sharp’ compilation.
◦ Compiles the source program in protected mode.
◦ From the created r-code extracts the CRC value.
◦ Registers the program and the CRC value into the compiler application

which will be deployed together with the source file.
• There were minimized the number of programs which access the drug data-

base, creating general usage programs which can be invoked in different
modes. In this way the number of programs which have to be registered
was reduced.

There can be deduced, that when a program which accesses the drug database is
changed, there has to be deployed a new version of the compiler application as well.

5. Ciphering methodology

To cipher the schema text files, different ciphering methods were checked:
• Electronic CodeBook mode (ECB) - in this case the data to be coded is split

in blocks of equal size with the length of a predefined key. The key is applied
to each block consecutively using bitwise XOR operator. There was taken a
key of 30 bytes length.
• CipherBlock Chaining mode (CBC) - the process is similar to the previous

one, but the applied key for each block is different, being the result of the
ciphering of the previous block. In this case the key is context based and
practically impossible to be guessed. Same length was chosen for the initial
code.
• Affine Cipher mode (AFC) - having some predefined key values to code a text

on byte level the following conversion is applied: y = (a ∗ x + b) mod m; In
this case decoding can be done using the following formula: x = c ∗ (y − b)
mod m; where a ∗ c mod m = 1, b being an arbitrary chosen value. m should
be at least as high as the number of different characters.

The performance related results are shown in the following table:



352 A. Hadházi

Comments:
• AFC ciphering is significantly faster than the other two methods, however it

was not used, being not as safe as the other ciphering modes.
• The reason of the big difference in performance among implementation of

ciphering algorithms in Progress 4GL and C is caused by the fact that in
Progress 4GL there are no bitwise operations implemented.
• For files of size of just a few kilobytes ciphering in 4GL is acceptable, but for

files with bigger size another implementation is needed.

6. Conclusions, possible enhancements

At the time of creating this protection mechanism the remote access technologies
were not mature and not sufficiently fast. This is why the coding and decoding of
the database had to be performed directly on the customer servers.

Currently it is appropriate to analyse a SOA based architecture to refresh the
drug database. In this way the data is completely hidden from the customers and
there is provided just a SOA service which is able to refresh the database.

References

[1] Johannes Buchmann, Introduction to cryptography. Second edition. Undergraduate
Texts in Mathematics. Springer-Verlag, New York, 2004.

[2] Progress Version 9.1 Documentation - Progress Language Reference

[3] Progress Version 9.1 Documentation - Progress Programming Handbook

[4] Progress Version 9.1 Documentation - Progress Client Deployment Guide

[5] Progress Version 9.1 Documentation - Progress Database Administration Guide and
Reference


