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Abstract
We investigated the structural and dynamic properties of so-called binary

dipolar monolayers (BDM). BDMs are planar colloidal systems containing
two sorts of particles which have a permanent or induced dipole moment. The
direction of the dipole moment of the particles is fixed to be perpendicular
to the plane of motion and has opposite orientation for the two components.
The goal of our work was to carry out a thorough investigation by computer
simulation in order to understand self-assembly processes in BDMs.
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1. Introduction

Interesting structure formation processes can be observed in electro- or magnetore-
ological fluids, which are composed of particles suspended in an electromagnetically
passive viscous liquid. The particles either have a permanent dipole moment or
attain an induced moment due to polarization when subjected to an external elec-
tric or magnetic field. In rheological fluids the long range anisotropic interaction
and the inherent frustration of the dipolar particle system result in a large variety
of interesting phenomena from cluster-cluster aggregation to the formation of crys-
talline lattices with various types of symmetry. Dipolar monolayers are obtained
when the motion of particles is restricted to the two-dimensional plane. Such two-
dimensional systems provide a deep insight into the dynamics of pattern formation
and to the structure of aggregates.

Colloidal crystallization has been investigated not only on homogenous sub-
strate, but also on periodic 2D substrate. Novel colloidal structures have been
found both numerically and experimentally. In these systems colloidal particles
are trapped in each potential minima, which is generated by interference patterns
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of laser beams. The trapped particles can be regarded as bounded entities with
only rotational degrees of freedom. This molecular crystalline states display long
range positional and orientational order, depending on the structure of substrates
and the number of particles in a potential minima [1].

Binary colloidal dispersions are obtained when two types of particles with differ-
ent material properties, mass, size, charge, number, ... are suspended in a viscous
liquid. Binary colloids are involved in a large variety of natural phenomena and
have potential industrial applications, which calls for a thorough experimental and
theoretical investigation.

We studied the behavior of binary dipolar monolayers (BMD), which are two
dimensional systems of dipolar particles. The direction of the dipole moment of the
particles is fixed to be perpendicular to the plane of motion and the two component
of the system have oppositely oriented dipole moments. The first experimental
realization of BDMs was presented recently by sedimenting two types of particles
in a liquid and subjecting the system to an AC electric field perpendicular to the
bottom plate of the container. The particles attained an induced dipole moment
which had opposite orientation (up and down) in a certain frequency range of the
driving field. Depending on the composition of the system and on the driving
frequency, several novel types of structure formation have been reported [2].

2. Computer model

We introduced a model of binary dipolar monolayers which takes into account all
the relevant interactions in the particle system [3]. In the computer model spherical
particles are considered which have a point-like dipole moment in the middle. The
system ofN particles consists ofN+ andN− particles of dipole moment µ+ pointing
upward (+), and dipole moment µ− pointing downward (−), respectively, in a
square shaped simulation box with side length L (fig. 1). The partial concentrations
of the components φ+ and φ− are defined as the coverage φ± = N±R2π/L2, whose
ratio provides the relative concentration φr = φ−/φ+ = N−/N+. The total particle
concentration φ is defined analogously φ = φ+ +φ− = (N+R

2π+N−R2π)/L2. For
simplicity, in the computer simulations we fix µ+ and vary the ratio µr = µ−/µ+,
i.e. the relative dipole moment. Similarly, we fix N and vary the simulation box
size L with respect the concentration φ.

The particles move in two dimensions under the action of the dipole-dipole force
with dipole moments fixed to be perpendicular to the plane of motion.

~F dd
ij =

3µiµj

r4ij
~nij (2.1)

Under such conditions the dipole-dipole force is isotropic (central), it always falls
in the plane of motion parallel to the line ~nij connecting the two particles. The
carrier liquid only exerts a friction force (Stokes drag)

~Fhyd
i = −αd~ri

dt
(2.2)
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Figure 1: An initial configuration of the simulation with N = 1000
particles. The two components are indicated by the different colors.

The inset explains the notation used in the model description.

on the particles, where d~ri/dt denotes the velocity of particle i. The drag coefficient
α depends on the radius R of the particles and on the viscosity η of the liquid
α = 6Rπη. The finite size of the particles is captured by introducing a repulsive
contact force between the touching particles in the form of the Hertz contact law

~F pp
ij = −kpp((2R)− rij)

3
2~nij = −kpp

~fdd
ij , (2.3)

where kpp is a material dependent constant. The particle system is supposed to be
fully dissipative, hence, the equations of motion of the particles simplifies to a first
order differential equation system

d~ri
dt

=
1
αi

∑

j

~F dd
ij −

kpp

αi

∑

rij<2R

~fpp
ij , i = 1, . . . , N. (2.4)

2.1. Molecular dynamics simulations

Since thermal motion does not play an important role, the time evolution of the
model system is obtained by computer simulation solving numerically the equations
of motion of particles. Its basic idea is the discretization of the time and the
approximation of the solution function with its truncated Taylor series

~ri(t+ ∆t) = ~ri(t) +
d~ri
dt

∣∣∣
t

∆t+
1
2!
d2~ri
dt2

∣∣∣
t

∆t2 +
1
3!
d3~ri
dt3

∣∣∣
t

∆t3 +O(∆t4), (2.5)

where ∆t denotes the time step used in the integration of the equation of motion.
We used 4th order Runge-Kutta method [7]. In order to achieve desired accuracy in
the solution with minimum computational effort we used adaptive stepsize control,
which means frequent changes in the stepsize on the grounds of the Cash-Karp



332 I. Varga, F. Kun

method [7]. This estimate is accurate to fifth order, one order higher than the
original Runge-Kutta steps.

In order to ensure the disorder of the initial configuration, first point-like par-
ticles are placed in the simulation box randomly and independently. Then the
particles are gradually blown-up, i.e. the particle radius is gradually increased
such that after each increment, a molecular dynamics simulation is performed tak-
ing into account the repulsive force arising between overlapping particles and the
friction force. As a result of the simulation all the particles can find equilibrium,
overlap-free position. This procedure is repeated until the particle radius R reaches
the desired value. Disorder is solely introduced by the randomness of the initial
configuration, no random forces are taken into account. In order to reduce the
surface effects in the simulation, we used periodic boundary conditions, assuming
that the simulation box is part of a larger system. For simplicity, the minimum
image convention was used such that the system was surrounded by its eight iden-
tical copies, which also implies that the dipole-dipole interaction was truncated at
a cutoff distance rc = L/2.

2.2. Brownian dynamics simulations

In certain parameter regimes of BDMs thermal noise can have a substantial roll
in the time evolution of the system which cannot be captured by the simulation
techniques presented in Chapter 2.1. In order to study the effect of thermal noise
on the structure formation of binary dipolar monolayers (BDM) we carried out
Brownian dynamics simulations by solving the Langevin equation

mi~̈ri = ~Fi + ~ζ, (2.6)

where ~Fi denotes the systematic force on particle i exerted by the other dipoles and
by the contacting particles (see Chapter 2), and ~ζ is the stochastic force arising due
to the finite temperature of the carrier liquid. Particle positions ~ri are obtained
using the Euler scheme

~ri(t+ ∆t) = ~ri(t) +
D

kBT
~Fi(t)∆t+ ∆~rG

i , (2.7)

where each component ∆rG
iα of ∆~rG

i is sampled from a Gaussian distribution, with
the density function

p(x) =
1√
2πσ

e−
(x−m)2

2σ2 . (2.8)

The mean of the components ∆rG
iα is zero (m=0), while their variance is 2D∆t.

D is the diffusion coefficient of a particle, which is calculated from the solvent
viscosity η and the size R of the particles according to the Stokes-Einstein relation
D = (kBT )/(6πηR), where kB and T are the Boltzmann constant and temperature,
respectively. The unit of length in the system is the particle diameter d and the
unit of time τ is defined as τ = d2/D. We measure the temperature in units of the
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binding energy E3(µr) of trimers at the given µr used, i.e. T ∗ = kBT/E3(µr) is
the dimensionless temperature. In the simulations the time step ∆t should be at
least two orders of magnitude smaller than the characteristic time scale τ . We set
∆t = 0.01τ from which the temperature range accessible at a given parameter set
of the model can be determined. (For further details of the simulation technique
see [6].)

3. Quantitative evaluation of experiments

We have constructed an experimental technique which provides a straightforward
and controllable realization of binary dipolar monolayers. In the experimental
setup, macroscopic particles are constructed by attaching metal particles of cylinder
shape to swimmers. The metal particles are magnetized along their axis so that
they have a permanent magnetic moment. The swimmers are cork discs which have
two major roles in the setup: on the one hand they ensure the confinement of the
composite particles to the air-water interface (floating) reducing also the friction
force, on the other hand they prevent flipping constraining the dipole moments to
be perpendicular to the plane of motion. The two components of the system are
realized by the two opposite orientation of the dipole moments of the particles.
This experimental method overcomes several difficulties of the other techniques
used in the literature [2]. Besides its simplicity, an important advantage of our
experimental techniques is that the time evolution of the particle system is easily
accessible by direct optical observations.

Figure 2: The steps of identifying clusters on experimental snap-
shots.

The process of aggregation was recorded by a digital video camera until a frozen
state was attained in which no further changes occurred. For further analysis, snap-
shots were extracted from the movies at regular times (see fig. 2/a). In order to
give a quantitative characterization of the dynamics of structure formation, and
of the geometrical structure of growing aggregates, the coordinates of single parti-
cles have to be determined from the digital images by means of image processing.
Starting from the colored snapshots of the system, we generated black-and-white
pictures, in which black dots indicate particles on the white background (see fig.
2/b). The black-and-white images were further processed by a computer program
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which determines the coordinates of the center of black discs. Based on the coordi-
nates, the program identifies particle clusters and determines all the characteristic
quantities of their structure. For cluster searching (fig. 2/c) we implemented the
Hoshen-Kopelman algorithm.

4. Structural and dynamic properties of BDMs

To prove that our model gives a satisfactory description of the BDMs we compared
the experimental and theoretical behavior of the system in a board range of the
relevant parameters.

4.1. Aggregation

From a random initial configuration single particles start to move and aggregate.
At low concentration anisotropic chain-like clusters join together at their ends
forming longer chains. The length of alternating chains is limited. When the chain
length becomes comparable to the average chain distance aggregation can occur
not only at chain ends but also at internal particles. During the time evolution
of the system cluster-cluster aggregation can be observed, resulting in chains and
branching structures of alternating particles. It can be seen also on the snapshots
of experiment and simulation on figure 3.

In order to characterize the structure of growing aggregates we calculated the
radius of gyration for each cluster in the snapshots and averaged over clusters of
the same size. We observed that in all cases that the cluster size as a function of
the radius of gyration shows power law behavior, where the exponent is different
for small and large cluster sizes. Since small clusters have chain-like morphology,
while the large ones are branched, the fractal dimension of large clusters has a
significantly higher value.

The dynamics of aggregation process can be characterized by the average cluster
size and number of clusters as a function of time. They have power law behavior
with concentration dependent exponents. We found that Vicsek-Family scaling
only holds in the dilute limit [4].

4.2. Crystallization

At high enough concentrations the particle system rapidly attains a frozen struc-
ture. The extended structure is typically composed of islands having crystalline
order. Starting from the random initial conditions particles of the two components
form various types of planar crystal lattices. Triangular lattice, square lattice, and
two-types of honeycomb lattices with hexagonal symmetry can be obtained. We
showed analytically that in a mono-disperse particle system the outcome of struc-
ture formation is determined by three parameters: depending on the value of the
total concentration of the particles, and on the relative concentration and relative
dipole moment of the two components. We determined the parameter regimes of
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Figure 3: a) The time evolution of the system during cluster-
cluster aggregation. b) An enlarged example of crystalline states:
honeycomb structure. Experiments (upper row) and simulations

(lower row) are in good agreement.

the occurrence of each structure. The experiments and computer simulations are
in a good agreement with our analytic predictions [3].

4.2.1. Molecular crystals

We showed that in binary dipolar monolayers crystalline states can occur analogous
to colloidal molecular crystals observed in colloids interacting with a periodic array
of traps [1], but in this case without the application of an underlying substrate. The
n-mers of BDMs are bounded configurations of particles with oppositely oriented
permanent dipoles whose interaction depends on their distance, relative orientation
and the relative dipole moment and the interaction has also repulsive and attractive
regimes.

Figure 4: Molecular crystalline states of trimer systems with dif-
ferent positional and orientational order.

We explore the possible crystal structures of trimers by means of computer
setting the initial particle positions based on our analyzes of the trimer potential.
The placement of handmade trimers practically substitute the substrate in the
initial state of the simulations. Lattice structures of a high degree of positional and
orientational order were obtained by computer simulations relaxing the system by
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solving the equation of motion of the particles without thermal noise (see fig. 4).
The structure of these lattices depends on the two perpendicular lattice constants.

Brownian dynamics simulations revealed that the binary dipolar molecular crys-
tals are instable states of the monolayer, namely at any non-zero temperature the
crystalline order has a finite lifetime which is a decreasing function of both the
temperature and the system size. At lower temperature the crystalline order dom-
inates, while at the same time at the higher temperature the crystal structure is
already lost, random walk of the trimers can be observed [5].

5. Summary

We constructed a dynamical computer model of binary dipolar monolayers. In order
to describe the structure formation observed in the experiments we carried out both
molecular dynamics simulations and Brownian dynamics simulations varying the
parameters of the system in a board range. To compare the simulation results to the
experimental findings we qualitatively evaluated the experiments by some means
of image processing. Based on these we determined the relevant parameters of the
system. We predicted and found the possible structures establishing the parameter
regimes of their occurrence, finding good agreement between the experiments and
our simulations. Several physical processes of the BMDs can be understandable
and explainable by our results.
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