Proceedings of the 8" International Conference on Applied Informatics
Eger, Hungary, January 27-30, 2010. Vol. 1. pp. 311-317.

An Attack on Domosi’s Cryptosystem

Zita Kovacs, Andor Pénzes

University of Debrecen, Faculty of Informatics
e-mail: kovacs.zitu@gmail.com, andor.penzes@gmail.com

Abstract

In this paper we introduce an attack on a practical stream cipher based
on a finite automata without outputs. For encryption and decryption the
apparatus uses the same secret keys, which have the transition matrix of a
key-automaton without outputs and with an initial state and final states.
This cryptosystem called Domési cryptosystem from its maker. First, we in-
troduce the system without its restrictions and we introduce the attack, which
is based on probability theorem and create equivalent classes. The result of
the attack an automaton which is state-equivalent to the key-automaton of
the cryptosystem. Then we show the restrictions which help us against the
attack.

Keywords: cryptography, cryptosystem, Domdsi system, finite automata, at-
tack, security

MSC: 94A60, 68P25

1. Introduction

The Démosi’s cryptosystem [1, 2, 3] is a cryptographic apparatus based on a Rabin-
Scott automaton as key for encoding and decoding information. Unlike other cryp-
tosystem based on abstract automata, the key is neither a Mealy automaton nor a
cellular automaton. It is similar to the Mealy machine based cryptosystems in that
encoding and decoding is performed using a key automaton. Unlike Mealy machine
or generalized sequential machine based cryptosystems, whether certain mappings
preserve length and prefix or other mappings preserve prefix or not has no signifi-
cance here, so these properties cannot exploined for breaking. The discussed system
is similar to cellular automata based cryptosystems in that the key-automaton is
an automaton without outputs, like the cells in a cellular automaton. Furthermore,
the encoded message here is created in a somewhat similar manner, via manipu-
lation of states, to the functioning of cellular automata, i.e. using the changes in
the state of the key automaton. It is also similar to the cellular automata based

311

312 Z. Kovdcs, A. Pénzes

cryptosystems in the sense that its random number generator is independent from
the key.

Because of these properties, the Démési’s cryptosystem is not a standard sys-
tem, therefore we need own developed attacks which are different from standard
attacks to proof the security of the system [7]. Although it uses a random number
generator, it can take random number generators which are proved to be random
indeed, or it can use any radioactive or other physical random number sources. The
system is completely immune against reused key attack and substitution attack. It
can not be attacked by exhaustive attack because of the sidereal number of possible
keys. Statistical attacks and algebraic attacks are also hopeless. Last but not least,
adaptive (or non-adaptive) chosen-ciphertext attack and chosen-plaintext attacks
are ineffectual.

The aim of this paper is to introduce new attacks which may be more succesful
comparing the above mentioned methods. On the basis of our results, we can
improve the system such that it is going to become immune against our discussed
new attacks too.

2. Preliminaries

We start with fundamental concepts. For all notions and notations not defined
here we refer to [4, 5, 6].

By an alphabet we mean a finite nonempty set. The elements of an alphabet are
called letters. A word over an alphabet ¥ is a finite string consisting of letters of
3. The string consisting of zero letters is called the empty word, written by A. The
length of a word w, in symbols |w|, means the number of letters in w when each
letter is counted as many times it occurs. By definition |[A| = 0. At the same time,
for any set H, |H| denotes the cardinality of H. In addition, for every nonempty

word w, denote by w the last letter of w. (T is not defined.) Let X* be the set of
all words over X, moreover let 7 = X%\ {\}.

By an automaton we mean a finite Rabin-Scott automaton, i.e. a deterministic
finite initial automaton without outputs supplied by a set of final states which is a
subset of the state set. In more details, an automaton is an algebraic structure A =
{A, a9, Ar,X,0} consisting of the nonempty and finite state set A, the nonempty
and finite input set ¥ which is the ciphertext alphabet, a transition function ¢ :
A x ¥ — A which is the key used for encryption (and for the decryption), the
ingtial state ag € A and (not necessarily nonempty) set Ap C A of final states.
The elements of the state set are the states, the elements of Ar are the final states,
and the elements of the input set are the input symbols.

It may happens that the initial state is a final state as well (this is not excluded).
An element of AT is called a state word and an element of ¥* is called an input
word or plaintext. State and input words are also called state strings and input
strings, respectively.

If a state string ajas . .. as(a1, ..., as € A) has at least three elements, the states
as,...,as_1 are also called intermediate states. It is understood that § is extended

An Attack on Démési’s Cryptosystem 313

to % : A x ¥* — A with 6*(a,\) = a,6*(a,2q) = §(a,x)6*(d(a,x),q),a € A,z €
3,q € X,

In other words, 6*(a,\) = a and for every nonempty input word zizs...xzs
(x1,22,...,25 € X) there are ay,...,a; € A with 6(a,z1) = a1,d(a1,22) =
as,...,0(as—1,xs) = as such that 6*(a,z1...25) = ay .. .as.

In the sequel, we will consider the transition of an automaton in this extended
form and thus we will denote it by the same greek letter 6. If §(a, w) = b holds for
some a,b € A,w € X* then we say that w takes the automaton from its state a
into the state b, and we also say that the automaton goes from the state a into the
state b under the effect of w. We say that z € ¥* is a dummy string with respect

to the input word u € ¥* if for every nonempty prefix w of z, d(ag, uw) ¢ Ap.

Finally for every pair a,b € A of states define the language L,p C X* of
input words which take the automaton from the state a into the state b without
intermediate final states. In formula, let

-
Lop={we¥*| 6 (a,w)=0b,
L
Yu,w € ¥ :w = (uv and u,v # A) = d(a,u) ¢ Ap}.

Furthermore we give a ¢ mapping (¢ : Ap — P), which orders each characters
from the plaintext alphabet (P) to the final states. The encryption function orders
a ciphertext to the plaintext, using the A automaton as a key: Cy : P* — C*.
The decryption function orders plaintext to the ciphertext, using the A automaton
as akey: Dy : C* — P*.

The encryption is the following: Each plaintext character p; is mapped through
a bijection to each final state by the function . Let p be the plaintext consisting of
P1,P2,---,Pk- The plaintext is read character by character starting from the initial
state of the key automaton. To each plaintext character is assigned a random input
string of adjustable length in a given length interval. By linking these input strings
together we get the encrypted message. Many ciphertext belongs to a plaintext.
We have to choose one from these.

The decryption is the following: Let ¢ be the ciphertext consists of ¢1,ca, ..., cg
strings. We starts the key-automaton from its initial state and we give it the word
c. When we get a state that the function ¢ maps a character to, we mark the given
character, and so on. Linking together these characters gives us the decrypted
ciphertext (that means this is the plaintext).

3. Restrictions

3.1. The Minimum and the Maximum

The ciphertext increasable to arbitrary size because of the properties of the system.
To control this we introduce the minimum and the maximum. These values are
out of increase the security. The higher the minimum, the higher security level of
the encryption, however this increases the size of the ciphertext.

314 Z. Kovdcs, A. Pénzes

We get different blocks which length is between the minimum and the maximum
during the encryption of a character of the plaintext, which is also increases the
security level of the encryption.

Of course, every block has equal length by chosen minimum equals to maximum.

So that, based on giving the minimum and maximum it can be controlled the
block length of ciphertext generated by encryption of a character. We always
considerate these values, therefore we choose not from an L;; set but from an

L;njm’mm set. If the ciphertext ¢ = ¢jcs . . . ¢, and the minimum is the min, and the

maximum is the max, then min < |¢;| < maz,i=1,...,kand¢; € L??”’mm where
Lzljm’m“ ={peP|peL;; and min < |p| < maz}. In the case of denominate

automaton these values have lower bounds so there exist ki,k2 : k1 < min and
ke < max, ergo the minimum and the maximum can not be chosen arbitrarily.
There are many different ways to determine these lower bounds , we developed a
method which based on making sets. We discuss this method later.

3.2. Initial conditions

Our minimum initial conditions needed for the encryption are the following: (a)
to be able to get from the initial state to every final state (Va € Ap there exists

a word w € L") (b) to be able to get from every final state to every final

state (Va,b € Ap there exists a word w € Ly }™"™*")

If an automaton completes these requirements it is called an encryption au-
tomaton. Since we could go from every state to every final state in one step
(Va € A,Vb € Ap there exists a word w € LS’Z and £k = [= 1), we have a
fast encryption automaton. 7

Further, for simplicity, we suppose that the automaton used for encryption is
minimal.

There are many methods to check if an automaton is an encryption automaton
or not. We developed a method which based on make sets. The method is the
following: for every final state and for the initial state (denote these states b) we
making the following sets: '

Hy :={a € A| there exists w € L’}

H;:=H;_1U{a € A| there exists w € Lg’fénvmaz,c € Hi_1}

If there exists an index j where the set Ap is a subset of the set H; then we
say that every final state is available from the b state.

If this index exists for every considered b state, then the automaton is an en-
cryption automaton.

Remark 3.1. These H sets are used to determine the lower bound of the minimum
and the maximum.

3.3. Uploading method

From the automata uploaded with random numbers comply to the initial conditions
only 14,7—15,8% (where |A| = 16). The encryption could significantly slow down,

An Attack on Démési’s Cryptosystem 315

if such a way completing a key-automaton, it is therefore necessary an uploading
method which immediately generates an encryption automaton. This automaton
satisfies that every final state were included exactly ones in each rows and each
columns (fast encryption automaton) and in the other positions the non-final states
have standard deviation. This standard deviation becomes an important factor
against the attack.

4. The Attack

The goal of the attack is to make an automaton A’ which has equivalent functions
to the A automaton. That is if we encrypt any plaintext with the original key-
automaton and decrypted with the new generated automaton we must get the
original plaintext: ¥p € P : Da/(Ca(p)) = p.

If we whenever encrypt an arbitrary plaintext with the original A
key-automaton, we do not receive the same ciphertexts, they are always differ-
ent, so we do not expect from the new generated key-automaton A’ that satisfying
this: Ca(p) = Cas(p). So we can use the new key-automaton for decryption.

4.1. Statistical analysis

The first step of the attack is a statistical analysis, which is a sufficiently large sam-
ple is needed. The sample contains ciphertexts, each of them has been obtained to
that we started the key-automaton A from its initial state for arbitrary plaintexts.
According to the following statement every state is available a p word which length
at most |A| — 1, so during the statistical analysis it is enough to analyse these p
words.

Theorem 4.1. Let A = (A, X,0) be a finite automaton. Moreover, let a,b € A be
—_
an arbitrary pair of states such that there exists an input word p € ¥* with §(a,p) =
—_—
b. Then there exists an input word q € X* with §(a,q) =b and |¢| < |A| — 1.

—_—
Proof of Theorem 4.1. Let p € X* be a shortest input word with é(a,p) = b. If
p = A then the statement is trivial. Otherwise let p = x122...x, with x1, 22, ..., 2, €
Y. If n < |A] —1 then we are ready. Therefore, we may suppose n > |A|. But then

the sequence a, d(a,x1),d6(a, r122), ..., 0(a, x122...2,) has at least one repetition. If
-
a = 6(a,x122...x,)(= b) then we are ready because a = d(a, A\)(= b, |\| < |A] —1)).
-
Therefore, if there exists an 1 < i < n with @ = §(a, z122...z;) then we may assume

D E——Y

i < n. But then a = 6(a, z;41...2,) (= b) = d(a,z;...x,)(= b) also holds contrary

of the minimality of |p|. Therefore, we may suppose that for every 1 < i < n,
—_—

a # 6(a,z1...z;). Hence there are 1 < i < j < n with é(a,z1...z;) = 6(a, z1...z;5).

Thus 6(a, z1..2—12:j41...%n) = 6(a,z1...25)(= b) contrary of the minimality of
n. O

316 Z. Kovdcs, A. Pénzes

During the analysis we make all possible p words where p € ¥* and |p| < |A]—1.
After we analyse the sample. We collecting those ciphertexts which begins with
p and between these ciphertexts we calculating the number of the occurrance of
ciphertexts which begins with px; (¢ = 1,...,|X|) Thus each of every analysed p
text generated a vector, denote this v,. The v, vector has |X| elements and its
components are the number of occurrances.

4.2. Classification

After the statistical analysis, we are creating equivalent classes using the obtained
vectors. These classes containing the analysed p texts and each class will be given
by those p texts whose vectors suchlike the euclidian distance of the corresponding
components are insignificant (p = ¢, if |v,, —vg,| <e,e >0,(i=1,...,]|%])). The
equivalent classes representing each of the states of the key-automaton A. Namely
that state the A key-automaton get to from its initial state effect to the texts from
the corresponding equivalent class. Since we could get infinitely many texts to a
state, it is possible that to the equivalent classes are contains infinite number of
elements.

4.3. Completing the automaton

The obtained classes will be the states of the key-automaton A’, which cardinality
is greater than or equal to the cardinality of the state-set of the A key-automaton.
The input symbols and the original input symbols are the same. The initial state
of the key-automaton A’ is the class which corresponding the initial state of the
key-automaton A. This is the class which contains the A word. The final states of
the key-automaton A’ that classes which are corresponding the final states of the
key-automaton A.

The uploading of the transition matrix is the following. We are writing the
Cps; class which corresponding the px; word to the intersection cell of column of
the C}, class and of the row of the input symbol x;, for every texts from the given
class (C).

Therefore, each cell may be as many entries as many triples in the C, class.
These entries are not necessarily the same class of. This means that the com-
pleted automaton might not be deterministic. There are further work with a non-
deterministic automaton, first we should do the determinisation and then do the
minimalisation. There are many algorithms for these tasks.

Tt is also possible that a cell does not contain anything (for that sample), i.e.,
does not occur any transition from C, class effects to input symbols z;. This
means that the completed automaton might be partial. It surely happens when
the original key-automaton is not fast encryption automaton.

An Attack on Démési’s Cryptosystem 317

5. Conclusions

If the automaton used for encryption is non-fast encryption automaton, then the
obtained automaton from the attack will be partial (by the analysed sample), hence
it is not be able to use for decryption. But the automata used by the system must
be fast because using these automata will increase the speed of encryption. From
an attack we get a deterministic automaton whose number of states is less than
the number of the key-automaton. This is due to the developed construction of the
automaton. Therefore the attack can not be used against the system. A further
challenge is to verify this result, therefore we are going to develop a computer
program which is implementing the attack.

Acknowledgements. We thank professor Pal Démosi for his help and helpful
comments. We also thank PhD School in Faculty of Informatics in University of
Debrecen for supporting our research.

References

[1] PAL DoMOsI, A novel stream cipher based on finite automata, IntelliSec - The
1st International Workshop on Intelligent Security Systems, 11-14th November 2009,
Bucharest, Romania.

[2] GEzA HoRvATH, The ¢ factoring algorithm (in Hungarian), Alkalmazott Mat. Lapok,
Vol. 21 (2004), 355-364.
[3] ZoLTAN MECSEI, ANDOR PENZES, A comparison of the DES and 3DES with Domdsi

cryptosystems, Proc. Pali’65, International Conference on Automata, Languages, and
Related Topics, Debrecen, submitted for publication.

[4] J.E. HopcrorT, R. MoTwani, J.D.ULLMAN, Introduction to Automata Theory,
Languages, and Computation, Pearson FEducation, Addison Wesley, Second Edition
(2001).

[6] RENJI TAO, Finite Automata and Application to Cryptography, Tsinghua University
Press, (2008).

[6] A.J. MENEZES, P. C. OORSCHOT, S. A. VANSTONE (1996, 2001, 2008) Handbook
of Applied Cryptography, CRC Press.

[7] Zita KovAcs, ANDOR PENZzES, Analysis of the security of the Domosi’s cryptosystem
(in Hungarian), II. Nyiregyhdzi Doktorandusz (PHD/DLA) Konferencia, (2009), 261—
265.

Zita Kovacs, Andor Pénzes
University of Debrecen, Faculty of Informatics, 4032 Debrecen, Egyetem tér 1.

