
Proceedings of the 8th International Conference on Applied Informatics
Eger, Hungary, January 27–30, 2010. Vol. 1. pp. 295–302.

Applying Spi-calculus for PayWord*

László Aszalósa, Andrea Husztib

aUniversity of Debrecen
laszalos@unideb.hu

bHungarian Academy of Sciences and University of Debrecen
huszti.andrea@inf.unideb.hu

Abstract

Achieving strong security properties is a core part of wide acceptance of
electronic commerce, hence it is essential to provide detailed security analysis
for cryptographic protocols. There are protocols considered secure for a long
time, still it is shown they contain flaws. Therefore it has been recognized
that informal arguments about protocol correctness are not reliable. Formal
methods offer a promising way for automated security analysis. Spi-calculus is
designed for describing and analyzing cryptographic protocols. In this article
we present how to employ this method for formalizing the micropayment
scheme PayWord developed by Ronald L. Rivest and Adi Shamir.

Keywords: spi-calculus, micropayment, PayWord

MSC: 94A60, 68Q65

1. Introduction

Electronic commerce, especially electronic payment systems, deal with personal,
confidential data, that should be protected against malicious attackers. Hence
design of cryptographic protocols require special care, cryptographic primitives are
applied to accomplish high level of security, to exclude adversaries’ unauthorized
access. Cryptographic schemes employing strong cryptographic tools, but weakly
designed allow frauds. Thus substantial evaluation should be provided in order to
prevent flaws. There are many methods to prove the safety properties of protocols.

One of the first attempts to analyze security protocols was the BAN logic [5].
Authors showed a flaw in the well known Needham-Schroeder key exchange proto-

*Research supported by the TARIPAR3 project grant Nr. TECH 08-A2/2-2008-0086, by
OTKA grant K75566, Foundation of Action Austria Hungary No. 755u1. and by GOP-1.1.2-
07/1-2008-0001 project. The work is supported by the TÁMOP 4.2.1./B-09/1/KONV-2010-0007
project. The project is implemented through the New Hungary Development Plan, co-financed
by the European Social Fund and the European Regional Development Fund.

295



296 L. Aszalós, A. Huszti

col, that was considered secure for a long time. Many researchers use general pur-
pose model checkers [9, 12], others use theorem provers [3, 10] and strand spaces [14]
for verifying security properties of cryptographic protocols. Recently other meth-
ods are popular: type checking [2], automatic protocol verifier [4, 8].

Our aim is to formalize a popular micropayment scheme called PayWord in
a very strict manner, that can be a starting point of the substantial evaluation.
As a formalization tool spi-calculus is applied, that provides all the cryptographic
primitives PayWord requires. Our work is organized as follows. Section 2 describes
elements of pi and spi-calculus, section 3 details the micropayment scheme Pay-
Word, in section 4 we outline the steps of the scheme and give the precise programs
of participants and finally we conclude our results.

2. Spi-calculus

The pi-calculus is a process calculus with first class channels to describe concurrent
computations whose configuration may change during the computation [11]. Chan-
nels can be created and passed from one participant to the other. The pi-calculus
does not provide cryptographic primitives, secure channels can be employed to
transmit confidential data.

We use the following notations for terms: n: name, (L,M): pair, 0: zero,
succ(M): successor, x: variable, where L and M are terms. The channels may be
restricted, so that only certain processes can communicate on them. We can define
the following processes:

• P |Q concurrency, where P and Q are processes

• c(x).P input prefixing, process waiting for message sent on channel c before
proceeding P , binding the message to name x

• c〈x〉.P output prefixing, name x is emitted on channel c before proceed-
ing P

• !P replication, this process always can create a new copy of P

• (νx)P creation of a new name, the process allocating a new constant x
within P

• let(x, y) = M in P pair splitting, behaves as P [N/x][L/y] if term M is the
pair (N,L), otherwise the process is stuck.

• 0 nil process, a completed and stopped process.

The spi-calculus is the extension of the pi-calculus [1]. It introduces primitives for
cryptography, i.e. symmetric, asymmetric encryptions, digital signatures and hash
functions:

• {M}N shared key encryption, encrypting M under the key N



Applying Spi-calculus for PayWord 297

• case L of {x}N in P shared key decryption, attempts decrypt the term L
with the key N . If L is {M}N then the process behaves as P [M/x], otherwise
the process is stuck

• {[M ]}K+ public key encryption, encrypting M under the key K+

• case L of {[x]}K− in P public key decryption, attempts decrypt the term
L with the key K−. If L is {[M ]}K− then the process behaves as P [M/x],
otherwise the process is stuck

• [{M}]K− signature generation, encrypting M under the key K−

• case L of [{x}]K+ in P signature verification, attempts decrypt the term
L with the key K+. If L is [{M ]}]K+ then the process behaves as P [M/x],
otherwise the process is stuck

• [x is M ]P testing, if the value of x is M the process behaves as P , otherwise
the process is stuck

• H(x) hash, represents hash value of x

This enable us not just manipulate secure channels abstractly, but we can construct
a secure channel by encryption of an insecure channel.

The spi-calculus use equations to describe the safety properties. Two processes
are equivalent (≃) if no environment can distinguish them. Let the P ′ is the ideal
version of P , i.e. all participants receive the original messages intended for them.
We say the protocol satisfies the authenticity if P ≃ P ′; and the protocol satisfies
the secrecy if P (M) ≃ P (M ′) for any message M ′ [1].

3. PayWord

By this time many kinds of Internet services and content providers have spread
widely, that induce necessity of several payment systems. The production cost of
content and services are often low and does not depend on the number of cus-
tomers, hence these systems often charge very small amounts. Payment by credit
cards require a minimal fee per transaction, therefore the service increase in cost
significantly. Services usually employ micropayments are content providers that
charge customers for on-line access to newspaper articles or . This motivates the
introduction of Micropayment schemes, such as PayWord [13].

Design of micropayment schemes require special care concerning efficiency. The
goal is to minimize the number of public key operations per payment, better to use
hash functions instead.

In the scheme PayWord there are three participants: user (U), vendor (V ) and
broker (B). A user asks for the broker’s authorization to make micropayments to
the vendor, meaning we have a user-broker and a user-vendor relationship. Ven-
dors initiate pay-off procedure with the broker, so we also have a broker-vendor



298 L. Aszalós, A. Huszti

relationship. Among the three relationships the user-vendor one is short-term, the
other two are long-term. User-vendor relationship occur ad-hoc and should be kept
alive for short time, usually just few hours, and the on-line payment and delivery
last only for seconds, but could be repeated several times. On the other hand bank-
vendor and user-bank relationships are often off-line and these kind of transactions
happen rarely, maximum once a day, hence computational cost is not so important.

Let us describe PayWord micropayment scheme in details. We employ digital
signatures, where public and secret keys of the users, vendors and brokers are
denoted by K+

U ,K
+
V ,K

+
B and K−

U ,K
−
V ,K

−
B , respectively. We denote by {M}K−

i

the application of secret key on message M , where i ∈ {U, V,B}.
User-Broker relationship

The user U initiates a relationship with the broker B by requesting an autho-
rized PayWord Certificate. U transports his credit-card number, the requested
amount and public key K+

U to B on an authenticated encrypted channel.

1. U → B : U,K+
U

B generates U ’s certificate by signing digitally B, U , K+
U and E with key K−

B .
It means that broker B issues this certificate to user U , whose public key is K+

U and
the certificate’s expiration date is E. This certificate ensures ensures any vendor
that valid amounts will be paid-off before date E.

2. B → U : {B,U,K+
U , E}K−

B

User-Vendor relationship
This relationship is short-term, meaning user buys an article with 5 pages and

visits another website. We assume that the same user might come back later and
requests another article on the same website. In case of first shopping U generates
a payword chain w1, w2, . . . wn in the following way. First U generates a random
number[6, 7] wn, then calculates

wi = H(wi+1),

where i ∈ {n − 1, n − 2, . . . , 0}. We call w1, . . . wn paywords, w0 is the root of
the chain. U chooses the number n arbitrarily beyond the requested amount and
generates a certificate containing the vendor’s identification information V , his
PayWord Certificate, w0 as a commitment and the actual date D. This certificate
is signed by the user’s secret key K−

U . The user should keep track of commitments
he sent.

3. U → V : {V, {B,U,K+
U , E}K−

B
, w0, D}K−

U

The vendor verifies U ’s signature by public key K+
U , and B’s signature by K+

B ,
checks whether D is before E and stores w0 with the user information.

After sending the certificate U makes his payment. A payment is a pair of a pay-
word and the corresponding index (wi, i), where i ∈ {1, 2, . . . , n}. It is important
that the user sends his paywords starting from w1, the w2 and so on.



Applying Spi-calculus for PayWord 299

4.1 U → V : w1, 1

4.2 U → V : w2, 2
...

4.n U → V : wn, n

Vendor V verifies the received payword wi by applying i times the hash function
on it, i.e. checks Hi(wi) = w0 in case of the first shopping. If U requests articles
from the V not for the first time, then V will verify wi with the stored payword wj ,
where j < i, i.e. checks Hi−j(wi) = wj . By storing the payword with the highest
index, V prevents double spending.

Vendor-Broker relationship
Vendor V sends all necessary information to B for pay-off. V transmits the

certificate generated by U , the last payword received from U and the corresponding
index.

5. V → B : {V, {B,U,K+
U , E}K−

B
, w0, D}K−

U
, wl, l

B verifies the signature of user’s certificate with K+
U , checks whether identity

information received matches with V , the expiring date and validity of the payword,
i. e. H l(wl) = w0. If all verifications hold, then B pays the proper amount to V .

4. Formalization

In this section first we formalize all messages in protocol PayWord, in the following
way: identifiers of steps (e.g. 1, 1′) correspond to sequential numbers of the mes-
sages above, each step is an elementary action, i.e. sending, receiving a message,
verifying a signature and testing values of variables. Table 1 lists all steps.

We are formalizing the steps on the Table 1 in Spi-calculus. We differentiate
three programs: user’s, bank’s and vendor’s program, describing all duties that the
participants should do during the whole protocol, respectively.

User’s program
Step Program Remark
1. CUB〈U,K+

U 〉 User sends its data
2′. CUB(u) receives the Bank’s answer
2′′. case u of [{v}]K+

B
checks the signature

let (v1, v2, v3, v4) = v in
2′′′. [v1 is B][v2 is U ][v3 is K+

U ] tests the data
3. CUV 〈[{V, u,Hn(M), D}]K−

U
〉 User sends the certificate

4.1. CUV 〈Hn−1(M), 1〉 sends the first payword
...

4.n. CUV 〈M,n〉 sends the last payword



300 L. Aszalós, A. Huszti

1. U → : U,K+
U

1′. → B : x1, x2

2. B → : [{B, x1, x2, E}]K−
B

2′. → U : u
2′′. U : signature check u as [{(v1, v2, v3, v4)}]K+

B

2′′′. U : test v1 = B, v2 = U ,v3 = K+
U

3. U → : [{V, u, w0, D}]K−
U

3′. → V : p
3′′. V : signature check p as [{(q1, q2, q3, q4)}]K+

U

3′′′. V : signature check q2 as [{(r1, r2, r3, r4)}]K+
B

3′′′′. V : test q1 = V , r1 = B, r2 = U , r3 = K+
U , r4 > q4

4.1. U → : w1, 1
4.1′. → V : s1, i1
4.1′′. V : test q3 = H(s1), i1 = 1
4.2. U → : w2, 2
4.2′. → V : s2, i2
4.2′′. V : test s1 = H(s2), i2 = i1 + 1

...
4.n. U → : wn, n
4.n′. → V : sn, in
4.n′′. V : test sn−1 = H(sn), in = in−1 + 1
5. V → : p, sn, in
5′. → B : y1, y2, y3
5′′. B : signature check y1, as [{z1, z2, z3, z4}]K+

U

5′′′. B : signature check z2, as [{t1, t2, t3, t4}]K+
B

5′′′′. B : test t1 = t1, x1 = t2, x2 = t3, z3 = Hy3(y2)

Table 1: Steps of PayWord

Bank’s program
Step Program Remark
1′ CUB(x) Bank receives User’s data

let (x1, x2) = x in
2 CUB〈[{B, x1, x2, E}]K−

B
〉 sends his certificate back

5′ CV B(y) receives Vendor’s request
let (y1, y2, y3, y4) = y in

5′′ case y1 of [{z}]K+
U

checks User’s signature
let (z1, z2, z3, z4) = z in

5′′′ case z2 of [{t}]K+
B

checks Bank’s signature
let (t1, t2, t3, t4) = t in

5′′′′ [t1 is B][x1 is t2][x2 is t3] tests the data
[Hy3(y2) is z3]



Applying Spi-calculus for PayWord 301

Vendor’s program
Step Program Remark
3′. CUV (p) Vendor receives User’s certificate
3′′. case p of [{q}]K+

U
in checks User’s signature

let (q1, q2, q3, q4) = q in
3′′′. case q2 of [{r}]K+

B
checks Bank’s signature

let (r1, r2, r3, r4) = r in
3′′′′. [q1 is V ][r1 is B][r2 is U ] tests data

[r3 is K+
U ][r4 > q4]

4.1′. CUV (s1, i1) receives the first payword
4.1′′. [q3 is H(s1)][i1 is 1] tests data

...
4.n′. CUV (sn, in) receives the last payword
4.n′′. [sn−1 is H(sn)][in is in−1 + 1] tests data
5 CV B〈p, sn, in〉 sends the bill to the Bank

5. Conclusion and further work

We have outlined the micropayment scheme PayWord, and a tool for describing
cryptographic protocols called Spi-calculus. We have presented the scheme as a
sequence of messages, and constructed the corresponding steps of elementary ac-
tions. Finally we have formalized the scheme in Spi-calculus. This is a milestone
towards verifying cryptographic properties of the scheme applying an automated
protocol checker.

References

[1] Abadi, M., and Gordon, A. D. A calculus for cryptographic protocols: The spi
calculus. Inf. Comput. 148, 1 (1999), 1–70.

[2] Backes, M., Hritcu, C., and Maffei, M. Type-checking zero-knowledge. In
ACM Conference on Computer and Communications Security (2008), P. Ning, P. F.
Syverson, and S. Jha, Eds., ACM, pp. 357–370.

[3] Bella, G., Massacci, F., and Paulson, L. C. Verifying the set purchase proto-
cols. J. Autom. Reasoning 36, 1-2 (2006), 5–37.

[4] Blanchet, B. Automatic verification of correspondences for security protocols.
Journal of Computer Security 17, 4 (July 2009), 363–434.

[5] Burrows, M., Abadi, M., and Needham, R. M. A logic of authentication. ACM
Trans. Comput. Syst. 8, 1 (1990), 18–36.

[6] Folláth, J. Construction of pseudorandom binary sequences using additive char-
acters over GF(2k). Period. Math. Hungar. 57, 1 (2008), 73–81.

[7] Herendi, T. Uniform distribution of linear recurring sequences modulo prime pow-
ers. Finite Fields Appl. 10, 1 (2004), 1–23.



302 L. Aszalós, A. Huszti

[8] Kusters, R., and Truderung, T. Using proverif to analyze protocols with diffie-
hellman exponentiation. Computer Security Foundations Symposium, IEEE 0 (2009),
157–171.

[9] Lowe, G. Casper: A compiler for the analysis of security protocols. In CSFW
(1997), IEEE Computer Society, pp. 18–30.

[10] Meadows, C. Language generation and verification in the nrl protocol analyzer. In
CSFW (1996), IEEE Computer Society, pp. 48–61.

[11] Milner, R., Parrow, J., and Walker, D. A calculus of mobile processes 1. Inf.
Comput. 100, 1 (1992), 1–40.

[12] Mitchell, J. C., Mitchell, M., and Stern, U. Automated analysis of cryp-
tographic protocols using mur-phi. In IEEE Symposium on Security and Privacy
(1997), IEEE Computer Society, pp. 141–151.

[13] Rivest, R. L., and Shamir, A. Payword and micromint: Two simple micropay-
ment schemes. In Security Protocols Workshop (1996), T. M. A. Lomas, Ed., vol. 1189
of Lecture Notes in Computer Science, Springer, pp. 69–87.

[14] Thayer, F. J., Herzog, J. C., and Guttman, J. D. Strand spaces: Why is
a security protocol correct? In IEEE Symposium on Security and Privacy (1998),
IEEE Computer Society, pp. 160–171.

H-4010, POBox 12
Debrecen, Hungary


