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Abstract

Nonparametric regression estimations are considered when the variables
are measured with error. SIMEX type modifications of certain function ap-
proximation procedures are studied. Asymptotic properties of the estimator
are obtained.
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1. Measurement error models

Consider the simplest model (linear regression)

Yt = β0 + β1Ut + εt, t = 1, . . . , n.

Usually the least squares estimator β̂1 of β1 is applied. However, if we can observe
the variable Ut with error, i.e. instead of Ut we observe

Xt = Ut + δt,

then β̂1 will not be unbiased (see [8]).
If the original estimator is used without modification in the case of measurement

error, then we call it naive estimator. In most cases one has to modify the naive
estimator. To this end additional knowledge is necessary about the error. E.g. the
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least squares estimator was modified by a deconvolution method by Fazekas and
Kukush [6].

The total least squares (TLS) method is often used in errors-in-variables models
(see, e.g. [12]). The TLS method is a very useful tool of applied statistics. However,
Fazekas, Kukush and Zwanzig [7] proved the inconsistency of the TLS method,
moreover a correction of the TLS was suggested.

This paper is devoted to the study of the asymptotic behaviour of the non-
parametric SIMEX estimator. In Section 2 we describe the well-known parametric
SIMEX estimator. That estimator was introduced by Cook and Stefanski [5] for
parametric regression problems to handle measurement errors. The idea of the
SIMEX estimator was applied for nonparametric models by Carroll, Maca and
Ruppert [3]. In Section 3 we present the nonparametric SIMEX estimator. The
main result of the paper is Theorem 4.1. It describes the asymptotic behaviour of
the nonparametric SIMEX estimator. In Section 4 a complete proof of Theorem
4.1 is presented.

2. The parametric SIMEX estimator

First consider the parametric SIMEX estimator proposed in [5]. SIMEX means
SIMulation and EXtrapolation. Consider the parametric regression model

Y = f(V, U, θ) + ε

where Y is the response variable, V is the covariate measured without error, U is
the predictor, ε is the random error term. f is a known function, but the parameter
is unknown. We have to estimate θ.

The problem is that we can observe U with error:

X = U + σZ

can be measured instead of U . Here Z is standard normal and it is independent of
Y , U and V . We assume that σ is either known or well estimated.

Denote Yi, Vi, Ui, Xi, i = 1, . . . , n, the sample. We assume that there is an
estimation procedure T with good statistical properties:

θ̂TRUE = T ({Yi, Vi, Ui : i = 1, . . . , n}).

However this procedure is not feasible because Ui, i = 1, . . . , n, are not available.
If we use in the original estimator for the variables measured with error, we obtain
the so called naive estimator

θ̂NAIVE = T ({Yi, Vi, Xi : i = 1, . . . , n}).

However, this estimator can have unpleasant statistical properties.
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Now generate additional random variables Zb,i, i = 1, . . . , n. We assume that
Zb,i, i = 1, . . . , n, are independent standard normal random variables and they are
independent of Yi, Vi, Ui, Xi, i = 1, . . . , n. For λ > 0, define

Xb,i(λ) = Xi + λ1/2σZb,i, i = 1, . . . , n.

Apply our original estimation procedure to the sample {Yi, Vi, Xb,i : i = 1, . . . , n}.
We obtain

θ̂b(λ) = T ({Yi, Vi, Xb,i : i = 1, . . . , n}).
We need the conditional expectation

θ̂(λ) = E(θ̂b(λ)|{Yi, Vi, Xi : i = 1, . . . , n}).

However the exact calculation of θ̂(λ) is not feasible. We have to approximate it
by an appropriate arithmetic mean.

Generate independent standard normal random variables Zb,i, b = 1, . . . , B, i =
1, . . . , n, being independent of the original sample Yi, Vi, Ui, Xi, i = 1, . . . , n. Then

θ̃(λ) =
1
B

B∑

b=1

θ̂b(λ)

is a good approximation of θ̂(λ). As the variance of the error in the observed
predictor variables is (1 +λ)σ2, we consider λ = −1 as the predictor without error.

So the SIMEX estimator is the extrapolation of θ̃(λ) back to λ = −1.
Cook and Stefanski [5] presented numerical (stochastic simulation) results for

the asymptotic behaviour of the SIMEX estimator. Carroll, Küchenhoff, Lombard
and Stefanski [2] obtained partial results and numerical evidence for the asymptotic
normality of the SIMEX estimator. Gontar and Küchenhoff [9] gave an expansion
of the SIMEX estimator with small measurement errors.

3. The nonparametric SIMEX estimator

Assume that we have a relationship between y and ξ of the form

y = f(ξ) + ε (3.1)

where y, ξ, and ε are random, ε is the unobservable error term and f is a fixed but
unknown deterministic function. Our aim is to estimate f .

Assume that when y and ξ are observable then we can estimate f consistently.
That is when the observations (y1, ξ1), . . . , (yn, ξn) for (y, ξ) are given, then the
estimator f̂n based on (y1, ξ1), . . . , (yn, ξn) can be calculated and

lim
n→∞

f̂n = f in probability. (3.2)
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f̂n can be produced by a known method (an estimating procedure, a learning
algorithm) that can be applied for any input data.

However, we can not observe the precise ξ. We observe it with error, that is we
observe

x = ξ + δ. (3.3)

Here x, ξ, and δ are q-dimensional random vectors. δ is an unobservable mea-
surement error. We assume that δ is independent of (ξ, ε), Eδ = 0, var(δ) = σ2Iq
(where Iq denotes the q × q unit matrix). Assume that σ2 > 0 is known. We deal
with the case when y is onedimensional.

Let the observations (y1,x1), . . . , (yn,xn) for (y,x) be given. It means that
(yi,xi) has the same distribution as (y,x) for each i. (More precisely, (yi, ξi, εi)
has the same distribution as (y, ξ, ε) and xi = ξi + εi for each i. We shall not
use explicitly that the sample consists of i.i.d. observations because our conditions
will be given in terms of f̂n.) Our starting point is the so called naive estimator.
That is the original estimation procedure is applied to the data with error. Our
estimating procedure offers f̂n(t, σ2) that is based on the observations with error.
More precisely

f̂n(t, σ2) = f̂n[x1, . . . ,xn; y1, . . . , yn](t) (3.4)

denotes the estimator based on the sample with error having variance σ2 that is
on (y1,x1), . . . , (yn,xn).

In the particular case of σ2 = 0 we would obtain the true estimator

f̂n(t, 0) = f̂n[ξ1, . . . , ξn; y1, . . . , yn](t)

based on the (unavailable) values of (y1, ξ1), . . . , (yn, ξn). The consistency condi-
tion (3.2) is equivalent to

lim
n→∞

f̂n(t, 0) = f(t) in probability for each t ∈ R. (3.5)

Carroll, Maca and Ruppert [3] proposed the SIMEX estimator for certain non-
parametric problems. One has to modify the naive estimator. Generate an addi-
tional sample independent of our original observations, i.e. let

{δi,b : i = 1, . . . , n, b = 1, . . . , B}

be i.i.d. q-dimensional standard normal vectors. Here B > 0 is a fixed integer.
Let Λ = {λ0, λ1, . . . , λm} be given pairwise distinct numbers with λ0 = 0 and
λ1 > 0, . . . , λm > 0. Here m is a fixed positive integer. Now we ’increase’ the
variance of the error in the following way. For each λ ∈ Λ let

xi,b(λ) = xi +
√
λσδi,b,

i = 1, . . . , n, b = 1, . . . , B. We obtain the estimation f̂n,b(t, (1 + λ)σ2) apply-
ing our original estimator to the sample with increased error variance, i.e. to
(y1,x1,b(λ), . . . , (yn,xn,b(λ)):

f̂n,b(t, (1 + λ)σ2) = f̂n[x1,b(λ), . . . ,xn,b(λ); y1, . . . , yn](t). (3.6)
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Now create the average of these estimators

f̄n(t, (1 + λ)σ2) =
1
B

B∑

b=1

f̂n,b(t, (1 + λ)σ2). (3.7)

For each fixed t we fit by least squares method a polynomial of degree m to the
values f̄n(t, (1 + λ0)σ2), . . . , f̄n(t, (1 + λm)σ2). That is let ̺(λ) = (1, λ, . . . , λm)⊤

where ⊤ denotes the transpose.
Then

γ⊤̺(λ), γ ∈ Rm+1,

is a polynomial of degree m. Let

γ̂(t) = arg min
γ∈Rm+1

∑

λ∈Λ

(
f̄n(t, (1 + λ)σ2)− γ⊤̺(λ)

)2
. (3.8)

Finally
f̃(t) = (̺(−1))⊤γ̂(t) (3.9)

is the SIMEX estimator of f(t).

4. Asymptotic properties of the SIMEX estimator

To obtain asymptotic properties of f̃(t), we need the following condition on f̂ . Let
λmax = max1≤i≤m λi. Denote Ck the set of k-times continuously differentiable
functions. Assume that there exists a σ2

0 > 0 and a deterministic function f∞(t, u),
0 ≤ u ≤ (1+λmax)σ2

0 such that f∞(t, .) ∈ Cl+1[0, (1+λmax)σ2
0 ] for each t and such

that
lim

n→∞
f̂n,b(t, (1 + λ)σ2) = f∞(t, (1 + λ)σ2) in probability (4.1)

for each t, λ ∈ Λ, and 0 ≤ σ2 ≤ σ2
0 .

Let g(s) = O(h(s)) denote that lim sups→0 g(s)/h(s) <∞, while oP (1) denotes
a quantity that converges to 0 in probability, as n→∞.

Theorem 4.1. Let l ≤ m. Assume that conditions (3.2) and (4.1) are satisfied.
Then for the SIMEX estimator defined by (3.9) we have

f̃(t) = fS(t, σ2) + oP (1), as n→∞, (4.2)

for each t and 0 ≤ σ2 ≤ σ2
0 where

fS(t, σ2) = f(t) + O(σ2l+2), as σ → 0. (4.3)

Proof. Let t, λ ∈ Λ, and 0 ≤ σ2 ≤ σ2
0 be fixed. Then, by (4.1), as n→∞,

f̂n,b(t, (1 + λ)σ2) = f∞(t, (1 + λ)σ2) + oP (1). (4.4)
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Using Taylor’s expansion, we have

f̂n,b(t, (1 +λ)σ2) = f∞(t, 0) +
l∑

j=1

1
j!
f (j)
∞ (t, 0)(1 +λ)jσ2j + O(σ2l+2) + oP (1). (4.5)

Here f (j)
∞ (t, 0) denotes the j-th partial derivative with respect to the second argu-

ment at point (t, 0), moreover the asymptotic behaviour is meant that first n→∞,
then σ → 0. Now, by assumptions (3.2) and (4.1), f∞(t, 0) = f(t). By (4.5) and
(3.7)

f̄n(t, (1 + λ)σ2) = f(t) +
∑l

j=1

aj

j!
(1 + λ)jσ2j + O(σ2l+2) + oP (1). (4.6)

Consider now the optimization problem (3.8). It is equivalent to the ordinary least
squares estimation in the linear model

f ≈ Aγ

where

A =




1 0 0 . . . 0
1 λ1 λ2

1 . . . λm
1

1 λ2 λ2
2 . . . λm

2
...
1 λm λ2

m . . . λm
m



,

f =




f̄n(t, (1 + λ0)σ2)
f̄n(t, (1 + λ1)σ2)

...
f̄n(t, (1 + λm)σ2)


 = (4.7)

=




f(t)
f(t)

...
f(t)


+

l∑

j=1

aj

j!
σ2j




(1 + λ0)j

(1 + λ1)j

...
(1 + λm)j


+ O(σ2l+2) + oP (1).

The solution is γ̂ = (A⊤A)−1A⊤f . Actually it gives the coefficients of the approx-
imating polynomial (having degree at most m). The operation (A⊤A)−1A⊤ can
be applied for each summand in the above expression of f . As m ≥ l ≥ j, the
approximation to the polynomial (1 + λ)j is precise, therefore the coefficients are

(
j

0

)
,

(
j

1

)
, . . . ,

(
j

j

)
, 0, . . . , 0.

Its combination with the coordinates of ̺(−1) that is with +1’s and −1’s is zero.
Therefore if we write (4.7) into the SIMEX estimator

f̃(t) = (̺(−1))⊤γ̂(t) = (̺(−1))⊤(A⊤A)−1A⊤f , (4.8)

the terms of the sum
∑l

j=1 . . . disappear. So we obtain (4.2)–(4.3). �
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