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Abstract

In this paper a robust parameter estimation based on the method of mo-
ments called Probability Integral Transformation is represented. The method
is used to determine the characteristic exponent α, the scale γ and location
parameter δ of a univariate symmetric stable distribution simultaneously from
a random sample. A simulation sequence is made to test the accuracy and
robustness of the estimation. In the second part we describe algorithms to
multivariate stable random number generation in case of a discrete spectral
measure and in independent case using Zolotarev’s formula. The simulation
results are illustrated.
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1. Introduction

A wide research work was made on characterization of univariate stable distribu-
tions. Reliable methods were created to estimate the parameters and compute the
density, however we still don’t know analytical formulas for the density and cu-
mulative distribution function (c.d.f) in general. The Probability Integral Trans-
formation method described in Section 2 is a robust technique and more accurate
then previously investigated algorithms which used the semi-interquartile range of
the sample to evaluate the parameters. [4, 5]

Defining and describing multivariate stable distributions are more difficult, be-
cause the dependence structure appears between the components. Considering a
general stable distribution the so-called spectral measure is used to evaluate the
dependencies. It’s hard to estimate a multivariate c.d.f because of computational
time of high dimensional integrals.
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Random number generation is the starting point to develop estimators to mul-
tivariate stable laws. In Section 3 some known methods applied to stable variables
are summarized and compared in terms of their usability in practice.

2. Probability Integral Transformation

2.1. PT estimator for characteristic exponent α

PT estimation [6] is used to determine the characteristic exponent α of a univariate
stable law by using the known probability density functions (p.d.f.) of normal and
Cauchy distributions. We assume that 1 < α < 2 and calculate the scale (and
location) parameter of the distribution represented by a sample using these two
known density. The scale parameter values can be computed with an iterative
algorithm considering a fixed α. If we change this α and simultaneously use the
normal and Cauchy p.d.f’s then we get scale parameter estimations equal at the
sample’s real α parameter.

If the distribution function F of ξ random variable can be inverted then F (ξ)
is uniformly distributed on (0, 1]. Let F (x) = F0(x−µ

σ ), F and F0 has the same
type, and we define location µ and scale parameter σ according to F0 standard
distribution function. For uniform distributions:

EF (F0(
ξ − µ
σ

)) =
1
2
, (2.1)

D2
F (F0(

ξ − µ
σ

)) =
1
12
, (2.2)

The equation system with µ and σ unknown variables can be solved with an itera-
tive algorithm called ping-pong method. We have 2.3,2.4 for the scale and location
parameters. We take them in turns and repeat computation until reaching arbi-
trary precision.
Location parameter:
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n +
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, (2.3)

Scale parameter:
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where the initial values are

T (0)
n = med{ξi}, and s

(0)
n = C ·MAD. (2.5)

and
ψ(x) = F0(x)− 1

2
. (2.6)
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MAD denote the median absolute deviation.

MAD(ξ) = med(|xi −med(ξ)|), (2.7)

where med(ξ) is the median of the distribution, s is the current estimation of the
scale parameter. The constant C is used to have the initial estimation unbiased.

β is a function in equation (2.4) which is 1
12 if the sample has the same type as

F0 and
β = D2

G(ψ(ξ)), (2.8)

otherwise. G denote ξ’s distribution function.
In interval (1, 2) we have to approximate β(α) function, because β is given

in integral form (see [6]), but numerical integration has very high computational
demand. At points α = 1, α = 1.1, α = 1.2, ...α = 2 a sample with 20 million
elements were generated and β(α) values were determined for each case of normal
and Cauchy distribution. Table 1. shows the results.

α β1 β2

1 0.0833309645949110 0.126807877965645
1.1 0.0758844534723818 0.118966259082521
1.2 0.0697612892957584 0.112284032323310
1.3 0.0646999988570841 0.106570898511029
1.4 0.0604648399039825 0.101682622480835
1.5 0.0569093151515006 0.097443890906153
1.6 0.0538933607717261 0.093798682214659
1.7 0.0513226066667932 0.090637100836610
1.8 0.0491126022363082 0.087875629036068
1.9 0.0472087085432832 0.085445768785679
2 0.0455654051822800 0.083333333333333

Table 1: Values for β1 and β2 depend on α.

For increase the speed of estimation β(α) are approximated with a rational
function

βi(x) =
a5x

5 + a4x
4 + a3x

3 + a2x
2 + a1x+ a0

x4 + b3x3 + b2x2 + b1x+ b0
, (2.9)

where i = 1, 2 and the coefficients a5, a4, a3, a2, a1, a0, b3, b2, b1, b0 were calculated
via values in Table 1. The equation system was solved with MATLAB at first
dropping the equation in case of α = 1.9 after α = 2 and then solved the whole
system. The solution which had the smallest least square differences from values
in Table 1. was decided to be the best. Table 2. shows the best coefficients.

By changing α, scale parameter estimations with β1(α) and β2(α) represent
two monotonically increasing curves if we illustrate α on horizontal axis and scale
parameter on vertical axis. The only one intersection point is at real α of the
sample’s distribution. If real α is near the end of the interval it’s possible that the
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coefficient β1 β2

b3 -3.83008202167381 -5.44424585925350
b2 4.78393407388667 8.41128641608921
b1 -2.07519730244991 -0.91519048820337
b0 0.18011293964047 -4.11676503125739
a5 0.00557315701358 0.02536047583564
a4 -0.02655295929925 -0.20581738159343
a3 0.12169846973572 0.84848196461615
a2 -0.31598423581221 -2.18605774383017
a1 0.34060543137722 3.06692780009580
a0 -0.12044269481921 -1.68393473522529

Table 2: Coefficients for the rational fraction function.

no. α sample elements repetition
1 1.3 100 100
2 1.5 100 100
3 1.8 100 100
4 1.5 100 2500
5 1.5 2500 100

Table 3: Simulations testing the PT estimation.

intersection point falls out (1, 2) because of the random effect and estimation inac-
curacy. The occurrence of this problem can be reduced by increasing the sample.
Intersection point is founded by cut-and-try method on interval (1,2).

2.2. Statistical analysis of PT estimator for α

PT estimation was tested with Monte-Carlo method. The results were analyzed
with Statistica for Windows 8.0. Table 3. contains simulation details. Theoretical
assumption is that the estimated α values follow normal distribution with mean of
the generated random sample. The hypothesis was tested with chi-squared test.

When the sample had 100 elements (in 1st-4th simulations) the procedure gave
wrong values, that’s why in probability tests less case performs than the ideal.

In the 1st-3rd simulations 100 repetition was made. Here we can accept the
normality in 95% significance level. In the 1st and 3rd simulation a few estimations
were fallen outside, but none in the 2nd. In the 4th simulation I had 2500 repetitions
and 6 fallen-out values.

In the 4th simulation we have to reject the normality. The mean has the same
difference from original α than in the 1st-3rd simulations, but the standard de-
viation increased. Estimations were spread on the whole interval (and out) so a
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sample with 100 elements is too less to have a reliable estimation.
In the 5th on interval [1.4, 1.6] chi-squared test gave very high p-value proving

that the estimations follow the normal distribution and no bad value popped up.
Obviously the precision could be better if we raise the sample. But it’s not possible
boundlessly because of the high computation time. Samples at the order of this
magnitude in simulation 5th give good estimations.

Table 4. shows confidence intervals for α in case of different simulations. α was
set to 1.5 to avoid wrong cases. Lower and upper means the confidence interval’s
bounds.

Nr. elem. repet. mean std.dev. lower upper
1 50 100 1,5278 0,2176 1,4841 1,5716
2 50 2500 1,5322 0,2099 1,5237 1,5408
3 50 10000 1,5266 0,2103 1,5223 1,5309
4 100 100 1,5133 0,1748 1,4783 1,5482
5 100 2500 1,5169 0,1552 1,5107 1,5231
6 100 10000 1,5212 0,1556 1,5180 1,5243
7 400 100 1,5106 0,0897 1,4926 1,5285
8 400 2500 1,5073 0,0770 1,5042 1,5104
9 400 10000 1,5073 0,0777 1,5057 1,5088

Table 4: Confidence intervals for α

3. Random number generation to multivariate sta-
ble distributions

3.1. Universal generators

Devroye’s [2] survey to nonuniform random variate generation provides us classical
paradigms such as the inversion, rejection, and alternating series method.

For a univariate random variable the inversion method is the following. As-
sume that we have the distribution function F and F−1 inverse of F . Generate a
random variable X as F−1(U) where U is uniform on [0, 1], then X is distributed
according to F . This method is chosen when F and F−1 are computable quickly,
but unfortunately in the case of stable distributions they aren’t.

Another way is to transform a uniform random variable with standard routines,
for example trigonometric, exponential or logarithmic functions. Although stable
distributions cannot be transformed from one uniform variable, they can from two.
Using integral representation of the c.d.f for general α and β Chambers et al. [1]
gave a solution. Zolotarev [8] has similar formulas using a uniform U and an
exponential E variable.
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If calculation of F−1 is impossible we can use the acceptance-rejection method
assuming we know the density function f(x) to F . The basic idea is instead gen-
erating with F we try to find a distribution G with density g(x) which is as close
to f(x) as possible and can be generated quickly. The ratio c = sup{f(x)/g(x)} is
the rejection constant. The algorithm’s steps are: generate a random variable Y
with G and a uniform random variable U . If U ≤ f(Y )

cg(Y ) then we "accept" Y , so
set X = Y . Otherwise reject it, so generate another Y . The method’s time com-
plexity is proportionate to constant c. For our case it’s hard to find appropriate
dominating curves to stable density because we don’t even know it exactly.

The alternating series method developed by Devroye [3] can be used when f is
known as infinite series. It suffices to have an approximation φn(x) that tends to
f(x)/(cg(x)) as n→∞ and for which we know a monotone error bound ǫn(x)→ 0.
In that case we let n increase until for the first time, either

U ≤ φn(X)− ǫn(X) (in which case we accept X) or (3.1)

U ≥ φn(X) + ǫn(X) (in which case we reject X). (3.2)

3.2. Independent case

While we have a general formula to generate a one dimensional stable variable
it’s obvious to generate independently the components and piece together them
in a vector. This way an arbitrary dimensional variable can be generated. The
well-known formula from Zolotarev [8] is used to made three dimensional vectors.

Figure 1. and Figure 2. show surfaces approximated from relative frequency
values with α = 1.8 and α = 1.5 (sample size :100000), Figure 3. and 4. show the
scattered sample respectively.

Figure 1. Figure 2.
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Figure 3. Figure 4.

3.3. Case of discrete spectral measure
This procedure coincident with the case of using a discrete spectral measure pre-
sented by J. P. Nolan [7]. Consider a discrete spectral measure Γ with a finite
number of point masses

Γ(.) =
n∑

j=1

γjδsj (.) (3.3)

where γj ’s are the weights and δnj ’s are point masses at the points sj ∈ Sd, j =
1, ...n. The characteristic function of X ∼ Sα,d(Γ, µ0) is

φX(t) = Eexp{i <X, t>} = exp(−IX(t) + i <µ0, t>) (3.4)

where the function in the exponent is

IX(t) =
∫

Sd

φα(<t, s>)Γ(ds) (3.5)

and
φα(u) =

{
|u|α(1− isign(u) tan(πα/2)), if α 6= 1,
|u|(1 + i(2/π)sign(u) ln |u|), if α = 1.

For a discrete spectral measure the characteristic function takes the form

φ∗(t) = exp
(
−

n∑

j=1

ψα(<t, sj> γj)
)

(3.6)

This expression is numerically simple while it’s difficult to compute φ(t). Nolan’s
theorem says that for a given ǫ > 0 there exist an n = n(d, α, ǫ,Γ) and values
s1, ..., sn and γ1, ...γn so that

sup|p(x)− p∗(x)| < ǫ (3.7)

and p and p∗ denote the density corresponding to the characteristic functions (3.4),
(3.6). The approximation is useful for calculating p(x) pointwise.
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Definition 3.1. For a set H ⊂ Sd define the cone generated by H as

Cone(H) = {x ∈ Rd.|x| > 0, x/|x| ∈ H} = {ra : r > 0, a ∈ H}.
Theorem 3.2 (Araujo and Gine,1980).

lim
r→∞

P (X ∈ Cone(H), |X | > r)
P (|X | > r)

=
Γ(H)
Γ(Sd)

In words, the mass that Γ assigns to H determines the tail behavior of X in the
’direction’ of H . Applied to a discrete spectral measure Theorem 1. says that the
density will have creases along the rays starting at the origin and passing through
the point masses. Graphically, the level curves of a two dimensional p.d.f. will be
star-shaped. See more examples in [7].

Figure 1. and Figure 2. shows the same consequences with the points (1, 0, 0),
(0, 1, 0), (0, 0, 1), (−1, 0, 0), (0,−1, 0), (0, 0,−1). The estimation with arbitrary
points and point masses based on the results of Modarres and Nolan (1994). If
X has characteristic function (3.6) then

X
D=





n∑

j=1

γ
1/α
j Zjsj , α 6= 1,

∑n
j=1 γj(Zj + 2

π ln γj)sj , α = 1,

where Zi ∼ Sα(1, 1, 0).
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