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Abstract

Offsetting operations in geometric modeling are inevitable for CAD/CAM,
and graphical applications. Offsets of integral parametric polynomial curves
are usually not polynomial, the offsetting operation is closed only for a subset
of rational parametric curves.

The theoretical results of Pottmann et al. clarified the problem, the solu-
tion is using rational curves with rational offsets. However, this conversion of
modeling software implies certain implementation costs, and might increase
interrogation time.

That is why further attempts for finding less complicated, and/or less
time consuming solutions, with similar practical functionality, might still be
of interest.

Our paper briefly surveys the most relevant achievements in the field, tries
to suggest possible simpler alternatives, based on the interpolation of point,
direction, and curvature data, at the ends of curve segments, then examines,
and evaluates them in detail. Our purpose is to make it easy to understand
and measure real functional and numerical limitations.
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1. Exact representation of offset curves

Let us first briefly review the results of Farouki and Pottmann on subsets of integral
and polynomial curves that have rational offsets.

Let us consider regular parametric curves, r(ξ). We can express their derivative
in the form

r′(ξ) = t(ξ)σ(ξ),

where t(ξ) = r′(ξ)
|r′(ξ)| denotes the unit tangent vector, and σ(ξ) is the parametric

speed: σ(ξ) = |r′(ξ)| =
√
x′2(ξ) + y′2(ξ).
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The offset at distance d is defined as

rd(ξ) = r(t) + dn(ξ),

where n(ξ) = (y′(ξ),−x′(ξ))√
x′2(ξ)+y′2(ξ)

is the unit normal vector.

Due to the square root in the normal vector, the offset curve is algebraically
more complex than its progenitor, which, in practice, means that the offset of an
integral polynomial curve is neither an integral, nor a rational polynomial curve in
general.

To overcome this problem, Farouki and Sakkalis proposed the use of Pythago-
rean Hodograph (PH) curves [2], polynomials that have hodographs satisfying the
following Pythagorean condition:

x′2(t) + y′2(t) = σ2(t), (1.1)

for some integral polynomial σ(t). These curves have rational offsets of degree
2n− 1, and in addition, they also provide exact rectification, since the arc-length
function

s(ξ) =
∫ ξ

0

σ(t)dt

is a polynomial. This makes PH curves remarkably useful in certain applications,
see for example [3].

The constraint (1.1) on the hodograph decreases the flexibility of the PH curves:
a PH curve of degree n ≥ 3 has only n+3 scalar degrees of freedom, while a general
integral polynomial plane curve of the same degree has 2(n+ 1) scalar degrees of
freedom. In practice, further special properties have to be taken into account as
well, for example the lowest degree PH curve that can have an inflection is the
quintic PH curve.

Pottmann [5] investigated the set of rational curves with rational offsets
(RCWRO). We can express a curve as the envelope of its g(t) tangent line family:

g(t) : nx(t)x + ny(t)y = h(t), (1.2)

where h(t) is the signed distance of the tangent line g(t) from the origin, and n(t)
is the rational unit normal vector of the tangent line g(t). If h(t) is rational and
n(t) is of the form

nx(t) =
2a(t)b(t)

a2(t) + b2(t)
, ny(t) =

a(t)2 − b(t)2
a2(t) + b2(t)

,

for some polynomials a(t), b(t), then the envelopes of such tangent lines will be
rational curves with rational offset. Moreover, the offset curve’s degree is the same
as of the original curve, since only h(t) has to be replaced by hd(t) = h(t) + d in
(1.2).

Once again, due to the construction, certain limitations have to be taken into
account. E. g. the lowest degree rational curves with rational offsets that offer the



Considerations on Offsetting Plane Curves 205

same flexibility as conics, are RCWRO quartics. The arc-length function can no
longer be expressed by elementary functions. Pottmann gave a formulation for the
subset of the RCWRO curves that have rational arc-length functions, see [5] for
more details.

2. Point-normal-curvature interpolation

2.1. The interpolation problem
Let there be given endpoint position, tangent direction and curvature data

(pi ∈ E2, ti ∈ R2, κi ∈ R), (i = 0, 1)

Find a polynomial curve in Bézier form

r(t) =
n∑

i=0

biB
n
i (t)

that reconstructs the above quantities at its endpoints, that is for i = 0, 1

r(i) = pi, t(i) = ti, κ(i) = κi, (2.1)

where t(t) and κ(t) denote the tangent and curvature functions of the curve r(t).
The interpolation condition poses 4-4 scalar constraints on the solution curve

at its endpoints.

2.2. Indirect solution to the interpolation problem
Let us find a solution for the above problem in two steps:

• construct two local Bézier curve solutions, c0(t) and c1(t), such that at t = i
the curve ci interpolates the given point, tangent and curvature (pi, ti, κi)
data (i = 0, 1)

• smooth the two local solution curves into a single global Bézier curve, so that
the position, tangent and curvature data at the endpoints remain unchanged

2.2.1. Integral quadratic local solution

Let us find a quadratic Bézier solution for the local interpolation problems. We
only consider interpolating (p0, t0, κ0) at t = 0, the case of (p1, t1, κ1) can be
derived similarly. Let us only consider the case κ0 6= 0, since if κ0 = 0, the curve
becomes a line through p0 with tangent vector t0.

The conditions of (2.1) result in the following constraints on the control points
b0,b1,b2 of r(t) = c0(t):

b0 = p0
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b1 = p0 + λt0

for some λ > 0 displacement along the tangent line. Using the curvature equation
for quadratic Bézier curves at t = 0

κ0 =
1
2

∆b0 ×∆2b0

|∆b0|3

where the cross product a× b is defined as

a× b = axby − aybx

we get the following:

λ =

√
1
2
t0 × (b2 − p)

κ0

The above equation also introduces a geometric constraint on the control point b2:
depending on the sign of the curvature, b2 has to lie above or under the tangent
line. Within the given half-plane we are free to position b2 anywhere. Positioning
the last control point on the tangent line will result in zero curvature.

If we’d like to set b2 we need a heuristic. There are several considerations, that
one can take into account when designing such a heuristic. Using a construction
for b2 that is invariant under a specific operation can exhibit advantages.

For example setting b2 as the closest point of the osculating circle (p0, κ0) to the
osculating circle (p1, κ1), we get a construction that is invariant under offsetting,
however, if the distance between p0 and p1 becomes significantly smaller than the
radii of the osculating circles, this construction leads to unwanted loops.

To avoid these loops, let us use a different heuristic, which consists of setting b2

to be the closest point of the osculating circle (p0, κ0) to p1. This is not invariant
under offsetting, but it allows the points to be interpolated to get arbitrarily close
to each other, independent of the osculating circle radii.

Once we have the two local solution curves c0(t) and c1(t), we elevate both
to degree 5 and use the appropriate 3-3 control points (the ones that have effect
on the position, tangent and curvature computation at the required endpoint of
the curve) from them to form a single quintic transition between p0 and p1 which
satisfies (2.1).

2.2.2. Rational quadratic local solution

Using rational quadratics we can exactly describe the arc between the heuristically
selected point of the osculating circle and the given endpoint [4].

Let us use the second heuristic scheme, and we will use the circular arcs as the
local solutions for the interpolation problem.

If we’d like to maintain the positivity of the weights, higher degree rational
Bézier curves might become necessary if the central angle of the arc becomes greater
than or equal to π.
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We can arrive at a global solution between p0 and p1 the same way as in the
integral case: after degree elevating the curves to degree five, we only keep 3-3
control points and their weights from the local solutions and use them to form a
rational quintic.

2.3. Direct solution to the interpolation problem
Let us now construct a direct, global solution to the interpolation problem (2.1).

2.3.1. Integral cubic solution

The planar integral cubic Bézier curve has 8 scalar degrees of freedom, which
is exactly as many as we need to solve our point-tangent-curvature interpolation
problem directly.

The interpolation condition of the positions p0,p1 and the tangents t0, t1 poses
the following constraint on the control points bi ∈ E2(i = 0, ..., 3) of the integral
cubic:

b0 = p0

b1 = p0 + λt0

b2 = p1 − γt1

b3 = p1

for some displacements λ, γ > 0 along the tangent lines at the endpoints. Solving
for the unknown λ and γ we get the following system of nonlinear equations

λ2 =
2

3κ0
(t0 × (p1 − p0 − γt1)) (2.2)

γ2 =
2

3κ1
(t1 × (p0 − p1 + λt0)) (2.3)

In general, the above system does not have real positive solutions. In [1] de Boor et.
al. proved, that if the data correspond to a smooth curve with non-vanishing curva-
ture and if the distance between the interpolation points is sufficiently small, then
the interpolation problem has positive real roots and it provides a high-accuracy
approximation:

Theorem 2.1. If f is a smooth curve with non-vanishing curvature and (bi, ti, κi),
(i = 0, 1, ...) are position, tangent and curvature values of f at parameters ti, and

h := sup
i
|bi+1 − bi|

and positive real solutions exist to (2.2, 2.3) on each segment between bi and bi+1,
then the corresponding interpolant(s) satisfy

dist(f ,bf ) = O(h6)
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For proof and more details on the geometric constraints, please refer to [1]. This
interesting result on the approximation order shows an advantage of interpolating
geometrical quantities instead of parametrization dependent Hermite-type input
data r, r′, r′′.

2.3.2. Integral quartic solution

An integral quartic has 10 degrees of freedom. In order to satisfy position and
tangent direction constraints, the control points bi ∈ E2(i = 0, ..., 4) must be set
to

b0 = p0

b1 = p0 + λt0

b2

b3 = p1 − γt1

b4 = p1

Let us now assume that b2 is given. We get the following for the λ > 0, γ > 0
displacements:

λ =
√

3
4κ0

(t0 × (b2 − p0))

γ =
√

3
4κ1

(t1 × (b2 − p1))

This also restricts the position of the middle control point to be within one of
the quarter planes determined by the two tangent lines. The actual quarter in
which the control point has to be put depends on the sign of the curvatures at the
endpoints.

3. Approximating offset curves

3.1. Approximation algorithm with PNC interpolation

We used the following algorithmic framework for offset curve approximation:

• Let us transform the endpoint data of the curve according to the amount of
offset. This gives us our first approximation r(0)

d (t) of the offset

• At each iteration, until a prescribed error threshold is reached, insert a new
point, tangent and curvature triplet at the place of greatest error between
the actual offset and the offset approximation r(i)

d (t)
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The first approximation can be obtained by transforming the original curve’s
endpoint position, tangent and curvature data. Using the Frenet-Serret formulas
for arbitrary parametric speed we can find

td(t) = sgn (1− dκ(t))t(t)

κd(t) =
κ(t)

1− dκ(t)

where sgn (x) is the signum function and d is the amount of offset. According to
these, the original curve’s endpoint data (pi, ti, κi), (i = 0, 1) has to be transformed
as follows

p̃d
i = pi + dni

t̃d
i = sgn(1− dκi)ti

κ̃d
i =

κi

1− dκi

Using any of the previously discussed direct or indirect PNC interpolation meth-
ods, we get an approximation curve segment.

The recursive insertion results in a sequence of PNC triplets di = (pi, ti, κi)
(i = 0, ...). The sequence of curve segments defined between triplets di and di+1

form a G2 spline.

3.2. Test results

The following table summarizes some test results. We measured the number of
required PNC segments to reach two relative error limits, 10−2 and 10−5 for a
cubic, a quartic and a rational quadratic curve.

Integral quintic Rational quintic Integral quartic
Cubic 10−2 4 3 5
Cubic 10−5 18 10 77
Quartic 10−2 4 4 9
Quartic 10−5 20 12 65
Circular arc 10−2 4 1 5
Circular arc 10−5 17 4 79

Table 1: Test results.

As expected, the rational quintic indirect solution performed the best, followed
by the integral quintic indirect solution. Due to the heuristic, the quartic scheme
performed poorly. The rational quintic’s need for 4 segments to get below the
relative error 10−5 when approximating a circular arc, suggests that the heuristic
used for the construction can be improved.
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4. Summary

The theoretical results on exact representation of offsets of Farouki et. al. and
Pottmann et. al. has been briefly reviewed. Easy to compute solutions for a point-
tangent-curvature interpolation problem have been given and they have been used
to approximate offset curves. Future work includes the more careful investigation
of heuristics and their effect on the approximation order, as well as generalization
to surfaces using similar geometric quantities as input.
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