
Proceedings of the 8th International Conference on Applied Informatics
Eger, Hungary, January 27–30, 2010. Vol. 1. pp. 185–192.

Interesting Surfaces in Nil Space*

Benedek Schultza, Jenő Szirmaib

aBudapest University of Technology and Economics, Institute of Mathematics,
Department of Geometry

e-mail: schultz.benedek@gmail.com
bBudapest University of Technology and Economics, Institute of Mathematics,

Department of Geometry
e-mail: szirmai@math.bme.hu

Abstract

W. Heisenberg’s real matrix group provides a noncommutative transla-
tion group of an affine 3-space. The Nil-geometry, which is one of the eight
Thurston 3-geometries, can be derived from this group. It was proved by E.
Molnár in [M97] that the maximal simply connected homogeneous Rieman-
nian 3-geometries have a unified interpretation in the 3-dimensional projective
spherical space that can be embedded into the Euclidean 4-space.

Analogous to the Euclidean geometry we introduce the notion of the
geodesic cone and torus in Nil geometry. We also show a visualization of
the lattice-like optimal packing of the geodesic balls determined by the sec-
ond author in [Sz06]. The pictures and animations were made by using the
Wolfram Mathematica software.
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1. On Nil geometry

The Nil geometry can be derived from the famous real matrix group L(R), dis-
covered by Werner Heisenberg. The left (row-column) multiplication of Heisenberg
matrices




1 x z
0 1 y
0 0 1






1 a c
0 1 b
0 0 1


 =




1 a+ x c+ xb+ z
0 1 b+ y
0 0 1


 (1.1)

*The first author was supported by the BME Institute of Mathematics.
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defines "translations" L(R) = {(x, y, z) : x, y, z ∈ R} on the points of the space
Nil = {(a, b, c) : a, b, c ∈ R}. These translations are not commutative in general.

The matrices K(z) ⊳ L(R) of the form



1 0 z
0 1 0
0 0 1


→ (0, 0, z) (1.2)

constitute the one parametric centre, i.e. each of its elemenst commutes with all
elements of L. The elements of K are called fibre translations.

The Nil geometry can be projectively interpreted by the "right translations",
as the following matrix formula shows, according to (1.1).

(1; a, b, c) −→ (1; a, b, c)




1 x y z
0 1 0 0
0 0 1 x
0 0 0 1


 = (1;x+ a, y + b, z + bx+ c) (1.3)

The detailed description can be found in article [2].
In [4] Emil Molnár has shown, that a rotation through angle β about the z-axis

at the origin, will be a quadratic mapping as follows:

x = x cos(β)− y sin(β), y = x sin(β) + y cos(β),

z = z − 1
2
xy +

1
4

(x2 − y2) sin(2β) +
1
2
xy cos(2β). (1.4)

This is an isometry of Nil, kééping invariant the infinitezimal Riemann metric
(arc-length-square) (ds)2 = (dx)2 + (dy)2 + (−x dy + dz)2.

Figure 1 shows the path of the point (1; 2, 1, 1) when it is rotated about the
z-axis.

Figure 1: The point (1; 2, 1, 1) rotated about the z-axis

The geodesic curves of Nil geometry are generally defined as having locally
minimal arc length between their any two (near enough) points. Because of the
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Figure 2: A geodesic curve, with α = π
6
, θ = π

4

homogeneity of Nil geometry we can assume, that the starting point of an arbitrary
geodesic curve is the origin, with initial values α and θ.

x(0) = y(0) = z(0) = 0; ẋ(0) = c cosα, ẏ(0) = c sinα
ż(0) = w; −π ≤ α ≤ π. (1.5)

Tha arc length parameter is

s =
√
c2 + w2 t, where w = sin θ, c = cos θ, −π

2
≤ θ ≤ π

2
, (1.6)

i.e. unit velocity can be assumed. The equation system of a helix like geodesic
curve is:

x(t) =
2c
ω

sin(
ωt

2
) cos(

ωt

2
+ α), y(t) =

2c
ω

sin(
ωt

2
) sin(

ωt

2
+ α)

z(t) = ωt

{
1 +

c2

2ω2

[
1− sin(ωt)

ωt
+

1− cos(2ωt)
ωt

sin(ωt+ 2α)
]}

. (1.7)

if w 6= 0. In the case, when w = 0, the curve is the following parabola:

x(t) = ct cos(α), y(t) = ct sin(α), z(t) =
1
2
c2t2 cos(α) sin(α). (1.8)

The trivial solution will be x(t) = y(t) = 0, z(t) = t if w = 1, c = 0.

Definition 1.1. The distance d(P1, P2) between the points P1 and P2 is defined
by the arc length of the geodesic curve from P1 to P2.
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2. Geodesic Cone

Using the Nil rotation and the geodesic line defined above, we can construct, an
object called geodesic "cone" similarly to Euclidean geometry.

Definition 2.1. Let g(t) be a geodesic line with starting point at the origin, with
parameter θ ∈

[
0, π

2

)
and α ∈ [0, 2π) (see (1.7)(1.8)). The geodesic cone Cθ is a

surface of revolution, generated by revolving the given geodesic curve about the
z-axis, where the Nil rotation is given by (1.4), and t ∈ [0, 2π

sin θ ].

The geodesic curve returns periodically to the z-axis, so if we rotate a "whole"
curve, then we get an object with self intersections. Because of this, we only rotate
the part of the geodesic curve between the origin and the first return.

On the first picture of Figure 3 we can the case, if we rotate the whole geodesic
curve. The second and third pictures show two "good" geodesic cones.

Figure 3: A "bad" cone, and two good ones

3. Geodesic Sphere

Definition 3.1. The geodesic sphere of radius R with centre at the point P1 is
defined as the set of all points P2 in the space with the condition d(P1, P2) = R.
Moreover we require that the geodesic sphere is a simply connected surface without
self-intersection in Nil space.

Tipically we chose the origin as the center of the sphere and ball, by the homo-
geneity of Nil. In [3] the following theorem was proven.

Theorem 3.2. The geodesic sphere and ball of radius R exists in the Nil space if
and only if R ∈ [0, 2π].
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We could construct the sphere, by definition, using the geodesic line, but there
is another method. The intersection of the sphere with the [xz]-plane is easily
computable. By rotating this curve about the z-axis we can obtain the geodesic
sphere in a more easily computable way. On the first two pictures of Figure 4 we
can see this curve and the sphere obtained from the curve if the radius is 4.

The Theorem 3.2 states, that there are no geodesic spheres, with larger radius
than 2π. On the two pictures on the right side of Figure 4 we can see the curve to
be rotated and the so obtained sphere with "too large" radius (R = 13). We can
see, that it has self intersections, which is the reason of the radius-condition in the
3.1 definition.

Figure 4: The curve to be rotated, and the so obtained geodesic
sphere - with R = 4 on the left, and R = 13 (a wrong example) on

the right

In [3] the second author examined the convexity of the geodesic ball in Eucledian
sense in our affine model and obtained the following theorem (see picture 5):

Figure 5: Various geodesic balls

Theorem 3.3. The geodesic Nil ball is convex in affine-Eucledian sense in our
model if and only if R ∈ [0, π

2 ].

On Figure 5 we illustrate the Theorem 3.3. On the first picture there is a ball
with R < π

2 , which is an example of an affine-Eucledian-convex ball. On the second
picture is a ball with R = π

2 , and on the third one a ball with R > π
2 , which is

non-convex in affine-Eucledian sense in our model.
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Figure 6: A geodesic ball at the origin, and its translated pictures

A geodesic sphere can be translated using the Nil translation defined in (1.1).
It is easy to see, that translating into the x-direction is distorting the sphere. The
pictures on Figure 6 are an example of this.

The geodesic balls will play a huge role in Section 5, in which we will visualize
the optimal lattice like ball packing of the Nil geometry by a type of Nil lattices.

4. The Nil Torus

Definition 4.1. Let S be a geodesic sphere of radius R ∈ [0, 2π] ,with a centre
on the [x, z] plane, and without intersection with the z-axis. The intersection of
S with the [x, z] plane is denoted by S[x,z]. The geodesic torus TS is a surface of
revolution generated by revolving the given curve S[x,z] about the z-axis where the
Nil rotation is given by formula (1.4).

Figure 7 shows some examples of the Nil tori. The third picture shows a torus
translated by the Nil translation. We can see, that this translation destorts the
torus, in a similar way to the sphere.

5. The densest lattice-like geodesic ball packing by
a type of Nil lattices

In [3] the second author determined the densest lattice like geodesic ball packing
by a type of Nil lattices. Using the tools above, we can visualize this construction.
First we need to define the Nil-lattice.

Let τ1, τ2 be Nil translations, and (τ3)k = τ−1
2 τ−1

1 τ2τ1 with this commutator
(k ∈ N, k > 0). Generate the discrete group (< τ1, τ2 >, k) denoted by L(τ1, τ2, k).

Definition 5.1. The Nil point lattice ΓP (τ1, τ2, k) is a discrete orbit of point P
in the Nil space under the group L(τ1, τ2, k) with an arbitrary starting point P for
all (k ∈ N, k > 0).
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Figure 7: Geodesic tori

In case k = 1 according to [3] the optimal values of the T opt
1 and T opt

2 , which
then generate the ΓP (T opt

1 , T opt
2 , k) lattice, for the optimal lattice-like ball packing:

t1,opt
1 ≈ 1.3063382, t3,opt

1 = Ropt ≈ 0.73894461;

t1,opt
2 ≈ 0.6531691, t2,opt

2 ≈ 1.13132206, t3,opt
2 ≈ 1.10841692, (5.1)

T opt
1 = (1, t1,opt

1 , 0, t3,opt
1 ), T opt

2 = (1, t1,opt
2 , t2,opt

2 , t3,opt
2 )

Using this values we can finally visualize the ballpacking. Figure 8 shows this
construction. We note that the kissing number of the balls is 14, compared to the
Euclidean case, which is 12.

Figure 8: The optimal lattice-like geodesic ball packing in case
k = 1

On Figure 9 we can see the same construction, but with "another layer" of balls
around the ball with the origin as the center, as well as the centers of the balls on
the picture.
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Animations of the discussed surfaces are also available on the following site:
http://demonstrations.wolfram.com/author.html?author=Benedek+Schultz

Figure 9: A picture with more balls, and the centers of the balls
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