
Proceedings of the 8th International Conference on Applied Informatics
Eger, Hungary, January 27–30, 2010. Vol. 1. pp. 135–148.

Demonstration of the Modified CSN-logic

Péter Takácsa, Tamás Mihálydeákb

aUniversity of Debrecen, Faculty of Health
e-mail: vtp@de-efk.hu

bUniversity of Debrecen, Faculty of Informatics
e-mail: mihalydeak@inf.unideb.hu

Abstract

We know a number of tools for examining cryptographic protocols. We
present the modified CSN-logic in this article. We analyze the Needham-
Schroeder protocol with this logical tool. We emphasize the important mo-
ments of the practical analysis: idealization, detectability of active attacks,
bounded nature of the logical model.

Keywords: cryptographic protocols, formal verification, modified CSN-logic

MSC: 68Q60, 03B70, 03B42

1. Introduction

Cryptographic protocols are often used in today’s communication tools. We meet
them when we pay by credit card, when we use mobile phones, etc.. Since we
handle our personal-, medical- and financial data in these systems, it is necessary
to protect these systems. Several methods can provide an opportunity to examine
the protocols (as a theoretical approach to computing, logical analysis, etc.). We
study the method of the logical approach in this article. The ultimate goal of the
process is to construct trusty, secure, adequate protocols.

The general scheme for analyzing cryptographic protocols with modal logic tools
are the following. The first step is the protocol formalization. We describe the
protocol steps of the fixed assets of formal logic. Sometimes this is called protocol
idealization. The second step: we specify the initial assumptions. For example, set
of communication partners and the quality of channels are given here. Thirdly: we
specify the goals of the protocol. We use the logical axioms and postulates in the
fourth step. We compare the results achieved in the fourth step with the protocol
goals stated in the fifth step. The goal is to infer the objectives of the protocol from
the formal protocol and from the initial assumptions. We use the above steps to

135



136 P. Takács, T. Mihálydeák

examine Needham-Schroeder protocol in this article, our logic tool is the modified
CSN-logic.

2. The modified version of the CSN-logic

The first significant result of the analysis protocol with logic tools was the BAN-
logic. [1] BAN-logic was the direct ancestor of the CSN-logic. The first description
of the CSN-logic was published in 1997 by T. Coffey and P. Saidha. [3] This system
enables analysis of protocols that use public key encryption. T. Newe and T. Coffey
extended the logic in 2003. The new system is capable of analysing public- and
secret-key protocols. The original sources do not reflect the expected exactitude
of the mathematical logic. We present an improved system, which is based on the
CSN-logic. We specify the applied logic language, the notation system and the
rules of inferences in our work. We modify the axiom system in lesser degree. We
keep the original CSN-logic name referring to the authors.

2.1. The language of the modified CSN-logic

Detailed description of the modified CSN-logic system is attached in Appendix.
Some important features of the logic are the following.

The CSN-logic is a many-sorted (multi-type) and multi-modal, first-order de-
duction system. The CSN-logic introduces new operators to describe the cryp-
tographic protocols ("K" is the knowledge operator, "B" is the belief operator).
The deduction system is based on a classical first-order deduction system. We ex-
tend the original system such as the deduction rules for the new operators. The
CSN-system is an "epistemic-doxatic" system - by another classification. Thus, the
CSN-logic combines the knowledge and belief operators. We have been studying
the CSN system since 2006. We examined a number of protocols (MANA protocol
family). [8] [9] [10] [11] Our aims are to refine and develop the system.

The CSN-logic is an ordered six-tuple:

L(CSN) = 〈Sort, LC, V ar, Con, T erm, Form〉

where Sort is the set of types, LC is the set of logical constants, V ar is the infinite
set of variables of language, Con is the infinite set of non-logical constants of the
language, Term is the set of terms, Form is a set of formulas of language. 20 ax-
ioms are in the system. A1-A4 are logical axioms. A5-A20 are non-logical axioms.
In addition, M1 - M5 are comments, which help the interpretation of the axioms
and to prove theorems.



Demonstration of the Modified CSN-logic 137

3. The Needham-Schroeder protocol

We show the application of theory in this section. We consider the Needham-
Schroeder symmetric key protocol (NS-protocol, 1978). [6] This protocol aims to
establish a session key between two parties on network and it is based on sym-
metric encryption algorithm. A, B, S entities (S server); nA, nB nonces (fresh
messages); ksAB, ksBS , ksAS symmetric keys; {}ksAB encryption with key ksAB.
The protocol steps are the following (in Alice-Bob notation system).

1. A→ S : A,B, nA

2. S → A : {nA, B, ksAB, {ksAB, A}ksBS}ksAS

3. A→ B : {ksAB, A}ksBS

4. B → A : {nB}ksAB

5. A→ B : {nB − 1}ksAB

The protocol is vulnerable to replay attack (Denning-Sacco 1981 [4]). If an at-
tacker uses older and compromissed value for ksAB, he can then replay the message
step 3 to Bob, who will accept it, being unable to tell that the key is non fresh.
The Kerberos protocol fixed this flaw (timestamp, nonces). [2]

3.1. Examination of the N-S protocol
The first step is the protocol formalization.
The idealization of the N-S protocol is the following.
1. S(ch1, A, t1, {A,B, nA})
2. R(ch1, S, t2, {A,B, nA})
3. S(ch1, S, t3, E({nA, B, ksAB, E({ksAB, A}, ksBS)}, ksAS))
4. R(ch1, A, t4, E({nA, B, ksAB, E({ksAB, A}, ksBS)}, ksAS))
5. S(ch2, A, t5, E({ksAB, A}, ksBS))
6. R(ch2, B, t6, E({ksAB, A}, ksBS))
7. S(ch2, B, t7, E(nB , ksAB))
8. R(ch2, A, t8, E(nB, ksAB))
9. S(ch2, A, t9, E({nB, 1}, ksAB))
10. R(ch2, B, t10, E({nB, 1}, ksAB))

The initial assumptions are the following.
I1. ∀Σ ∈ ENT \{A,S} ¬LΣ,t0ksAS , LA,t0ksAS , LS,t0ksAS .
Only A and S know key ksAS .
I2. ∀Σ ∈ ENT \{B,S} ¬LΣ,t0ksBS, LB,t0ksBS , LS,t0ksBS .
Only B and S know key ksBS .
I3. CH(ch1, pub), ENTch1 = {A,B, S}. The channel ch1 is public, ENTch1 is the
set of entities capable of using the channel ch1.
I4. CH(ch2, pub), ENTch2 = {A,B, S}. The channel ch2 is public, ENTch2 is the
set of entities capable of using the channel ch2.
I5. ENTch1 = ENTch2 = {A,B, S,E}. E is involved in case of passive attacks.



138 P. Takács, T. Mihálydeák

I6. ∀ti ∀Ψ ∈ ENTchj KE,ti(R(chj ,Ψ, ti,m)) (i ∈ {1, . . .10}, j ∈ {1, 2}).
E receives all messages.

The protocol goals and the proofs are the following.

Theorem 3.1 (G1.). Entity A knows the secret key ksAB at time t4.

LA,t4ksAB

Proof: If A receives the message in protocol step 4, the following statements hold
true:

KA,t4R(ch1, A, t4, E({nA, B, ksAB, E({ksAB, A}, ksBS)}, ksAS)) (1)

By axiom A2(a), we have:

R(ch1, A, t4, E({nA, B, ksAB, E({ksAB, A}, ksBS)}, ksAS)) (2)

By axiom A6(a), we obtain:

LA,t4E({nA, B, ksAB, E({ksAB, A}, ksBS)}, ksAS) (3)

Finally, by I1., axioms A3(a), A11(b) and A11(d), we obtain:

LA,t4ksAB. �

Theorem 3.2 (G2.). Entity A knows at time t4: entity S sends message contain-
ing the key ksAB at time ti < t4

KA,t4S(ch1, S, ti, E({nA, B, ksAB, E({ksAB, A}, ksBS)}, ksAS))

and entity A knows at time t4: entity S can use the key ksAB at time ti

KA,t4LS,tiksAB.

Proof: As starting point for our proof we use the (1) point of the proof G1.
theorem. By axiom A6(a) and inference rule K1(a), we have:
∃Ψ ∈ ENTch1\{A} ∃ti < t4

KA,t4S(ch1,Ψ, ti, E({nA, B, ksAB, E({ksAB, A}, ksBS)}, ksAS)) (1)

Since in our model ENTch1\{A} = {B,S}, there are two possibilities.

KA,t4S(ch1, B, ti, E({nA, B, ksAB, E({ksAB, A}, ksBS)}, ksAS)) (2)
KA,t4S(ch1, S, ti, E({nA, B, ksAB, E({ksAB, A}, ksBS)}, ksAS)) (3)

By I1. and A12(a), (2) can be excluded. By axiom A5(a), we obtain:

KA,t4LS,tiE({nA, B, ksAB, E({ksAB, A}, ksBS)}, ksAS) ti < t4 (4)

By using I1., axioms A11(b) and A11(d), and step (4):

KA,t4LS,tiksAB ti < t4. q.e.d.



Demonstration of the Modified CSN-logic 139

Theorem 3.3 (G3.). Entity B knows the secret key ksAB at time t6.
LB,t6ksAB

Proof: The proof is similar to theorem G1. By step 6 of the protocol:

KB,t6R(ch2, B, t6, E({ksAB, A}, ksBS)) (1)

We use A2(a), A6(a), I2., A3(a), A11(b) and A11(d) respectively and we
obtain the statement. �

Theorem 3.4 (G4.). Eavesdropper E does not know the secret key ksAB at time
t10. The protocol is resistant to passive attack. ¬LE,t10ksAB.

Proof: By initial assumptions I5. and I6. (passive attack), we have:
(1) KE,t2(R(ch1, S, t2, {A,B, nA}))
(2) KE,t4(R(ch1, A, t4, E({nA, B, ksAB, E({ksAB, A}, ksBS)}, ksAS)))
(3) KE,t6(R(ch2, B, t6, E({ksAB, A}, ksBS)))
(4) KE,t8(R(ch2, A, t8, E(nB, ksAB)))
(5) KE,t10(R(ch2, B, t10, E({nB, 1}, ksAB)))
Expressions (2) and (3) contain encrypted message elements. These messages
can be decrypted with knowledge of keys ksAS and ksBS . These keys cannot
be directly transferred, so entity E does not know these keys. Expressions
(4) and (5) describe encryption with key ksAB. E should know the key
ksAB from the previous terms. The expression (1) does not contain the key
ksAB. Thus, we can admit: E does not know the key even by capturing the
messages. �

3.2. Active attack

Entity B receives the message containing the key ksAB from entity A, according
to protocol steps. S creates this message element, A essentially only transmits it.
On this basis we can formulate statement similar to G2. theorem. Entity B knows
at time t6: entity A sends message containing the key ksAB at time ti < t6

LB,t6S(ch2, A, ti, E({ksAB, A}, ksBS))

and entity B knows at time t6: entity A can use the key ksAB at time ti

KB,t6LA,tiksAB.

If we apply the skeleton of the G2 proof we get stuck. As starting point for our
proof we use the (1) point of the proof G3. theorem. By axiom A6(a) and inference
rule K1(a) we obtain:
∃Ψ ∈ ENTch2\{B} ∃ti < t6

KB,t6R(ch2, B, t6, E({ksAB, A}, ksBS)) (3.1)



140 P. Takács, T. Mihálydeák

Since in our model ENTch2\{B} = {A,S}, there are two possibilities.

KB,t6S(ch2, A, ti, E({ksAB, A}, ksBS)) (2)
KB,t6S(ch2, S, ti, E({ksAB, A}, ksBS)) (3)

(2) would be excluded by I2.. We cannot go further because B has no prior direct
information about communications of A and S. We cannot prove the above state-
ment in this way.

The failure of proof of the statements above may indicate weakness in the
protocol. This weakness makes the Denning-Sacco-type attack possible. [4] The
current formal methods are not suitable for the detection of active attacks. Active
intervention means the modification, deletion, replacement or installation of new
steps in the protocol. This represents new protocols, which means that a new
analysis is needed similar to the foregoing.

4. Summary - plans and tasks

The presentation included a description of the CSN-logic. Some important and
stressed experiences are as follows.

• The idealization is a very important step of the examination.

• The active attack always means a new protocol. It always means new exam-
inations.

• The limitations of the logical model always should be considered.

Future goals, some of which relate to the CSN-logic are as follows.

• we must consider new protocols,

• we must develop the language (one-way channels (model bulletin board),
channel mix),

• we should examine the axiom-system (reduction, consistency, independence,
etc.),

• we should record intended interpretation in detail.

New questions emerged during the analysis and should be studied later. Let
us analyze a situation in which two attackers are in the model. Does the passive
attacker recognize the active attacker? How can this be modelled?



Demonstration of the Modified CSN-logic 141

References

[1] M. Burrows, M. Abadi, and R. Needham. A logic of authentication. ACM Transactins
on Computer Systems, 8(1):18–36, February 1990.

[2] L. Buttyán and I. Vajda. Kriptográfia és alkalmazásai. TypoTex, 2004.

[3] T. Coffey and P. Saidha. Logic for verifying public-key cryptographic protocols.
IEEE Proceedings Computers and Digital Techniques, 144(1):28–32, 1997.

[4] D. E. Denning and G. M. Sacco. Timestamps in key distribution protocols. Com-
munications of the ACM, 24.(8.):533–536., August 1981.

[5] M. Kudo and A. Mathuria. An extended logic for analyzing timed-release public-key
protocols. In Proceedings Information and Communication Security, Second Inter-
national Conference, ICICS’99, Sysdney, pages 9–11, November 1999.

[6] R. M. Needham and M. D. Schroeder. Using encryption for authentication in large
networks of computers. Communicatins of the ACM, 21(12):993–999, 1978.

[7] T. Newe and T. Coffey. Formal verification logic for hybrid security protocols. In-
ternational Journal of Computer Systems Science & Engineeing, pages 17–25, 2003.

[8] P. Takács. The extension of CSN-logic for multi-channel protocols. In Proceedings of
the 7th ICAI Conference, Eger, pages 147–154, 2007. Reviewed by Zentralblatt für
Mathematik.

[9] P. Takács and S. Vályi. Többcsatornás kriptográfiai protokollok vizsgálata a bővített
CSN-logika eszközeivel. In I. Nyíregyházi Doktorandusz Konferencia, DE-EK, Decem-
ber 2007.

[10] P. Takács and S. Vályi. An extension of protocol verification modal logic to multi-
channel protocols. Tatra Mountains Mathematical Publications, 41:153–166, 2008.

[11] P. Takács and S. Vályi. Javaslat a MANA II kriptográfiai protokoll korrekciójára. In
Informatika a felsőoktatásban 2008, Augusztus 2008.



142 P. Takács, T. Mihálydeák

Appendix

The language of the CSN-logical system is the following ordered sextet 1

L(CSN) = 〈Sort, LC, V ar, Con, T erm, Form〉
where
Sort = {U,E,K, T, C} is the set of types: U message type; E entity type; K key
type; T time type; C channel type.
LC = {¬,→,↔,∧,∨,≡,=, ∀, ∃, (, )} is the set of logical constans of the language.
We use them as it is often used in the first-order logic.
Var = V arU ∪ V arE ∪ V arK ∪ V arT ∪ V arC is the infinite set of variables of lan-
guage. All variables have specified type. V arδ denotes the set of δ type variables.
Con = ConU ∪ConE ∪ConK ∪ConT ∪ConC is the infinite set of non-logical con-
stants of the language. All non-logical constants have defined types. Conδ denotes
the set of δ type non-logical constants. The set can be empty in certain types of
case. F (0)δ is the set of constant symbols (name-constants), F (n)δ is the set of
n-ary function symbols. Numbers in arguments indicate the number of parame-
ters. It is usually given in a series of finite index 〈δ1, δ2, . . . , δn, δ〉 for the function
symbols. This specifies the type of the arguments (δi ∈ Sort) and the type of the
function symbol (δ ∈ Sort). P (0) is the set of propositional variables (relations of
valence 0), P (n) is the set of predicate symbols with valence n (number of argu-
ments). It is usually given in a series of finite index 〈δ1, δ2, . . . , δn〉 (δi ∈ Sort) for
the predicate symbols.
Term = TermU ∪ TermE ∪ TermK ∪ TermT ∪ TermC is the set of terms of the
language. Terms are given by inductive definition. Termδ denotes the set of δ
type terms. The set can be empty in certain types of cases. The general form of
inductive definition for all types is the following:

(a) V arδ ∪ F (0)δ ⊆ Termδ.

(b) If f ∈ F (n)δ, (n = 1, 2, . . .) and s1, s2, . . . , sn ∈ Term, then
f(s1, s2, . . . , sn) ∈ Termδ.

Form is a set of formulas of language. Forms are given by inductive definition:
(a) P (0) ⊆ Form.
(b) If s1, s2 ∈ Termδ, then (s1 = s2) ∈ Form.
(c) If P ∈ P (n), (n = 1, 2, . . .) and s1, s2, . . . , sn ∈ Term, then

P (s1, s2, . . . , sn) ∈ Form.
(d) If A ∈ Form, then ¬A ∈ Form.
(e) If A,B ∈ Form, then (A→ B), (A ∧B), (A ∨B), (A ≡ B) ∈ Form.
(f) If x ∈ V ar, A ∈ Form, then ∀xA, ∃xA ∈ Form.

Additional details and characteristics of each type are as follows:

1The original CSN-logic was appearing two articles by T. Coffey, P. Saidha and T. Newe. [3]
[7] This system is complemented by M. Kudo and A. Mathuria. [5] The first form of the multi-
channel scheme was establish by P. Takács and S. Vályi. [10] The Appendix contains a substantial
revision of this system. We refer to the above-mentioned sources of intended interpretation of the
system.



Demonstration of the Modified CSN-logic 143

• i, j are general index variables. They run along the natural numbers.
• x, y, z are general variables. It is always given what types of variables are rep-
resented.
•We employ parentheses for clarity in the description in many cases. They should
be read and interpreted as usual in mathematics.
• Free variables are implicitly quantified with universal quantifiers in the CSN ax-
ioms and inference rules.

U - message type
Characterization: description of messages in communication. MSG is a set of all
messages. This set is infinite.
• V arU : Set of message type variables. This set is infinite.
m, n, r, m1, m2, . . ., mi, mj , . . . are general message variables.
nA, nB, . . ., nΣ, . . . are special message variables. They usually denote unique
message elements (fresh messages - against replay attacks).
rA, rB, . . ., rΣ, . . . are special message variables. They usually denote random
numbers. Capital letter in the index denotes the entity who generates the message.
• ConU :
F (0)U :
(a) Transmitted signals (characters; bit-sequences; 1, 2 bytes with ASCII

or Unicode coding) during the protocol communication are message-
constants.

(b) Fixed meaning strings (commands, directions, for example: "enc", "dec",
"0", "1", . . .) are message-constans. They are always in double quation-
marks. We provide interpretation in all cases.

F (n)U :
{m1,m2} We can generate new messages by concatenation. Braces denote

this construction. {} ∈ F (2); 〈U,U, U〉.
E(m, k) Encryption function - case of symmetric key cryptography.

E(m, ks(Σ,Ψ)) means: encryption of plaintext message m using the
shared secret key of entities Σ and Ψ. E ∈ F (2); 〈U,K,U〉.

D(m, k) Decryption function - case of symmetric key cryptography.
D(x, ks(Σ,Ψ)) means: decryption of chiphertext message m using
the shared secret key of entities Σ and Ψ. D ∈ F (2); 〈U,K,U〉.

e(m, k) Encryption function - case of public key cryptography. e(m, kΣ)
means: encryption of plaintext message m using the public key kΣ

of entity Σ. e(m, k−1
Σ ) means: generate digital signature of message

m using the secret key k−1
Σ of entity Σ. e ∈ F (2); 〈U,K,U〉.

d(m, k) Decryption function - case of public key cryptography. d(m, k−1
Σ )

means: decryption of chiphertext message m using the secret key
k−1
Σ of entity Σ. d(m, kΣ) means: check of the digital signature of

messagem using the public key kΣ of entity Σ. d ∈ F (2); 〈U,K,U〉.
h(m, k) Keyed hash function. h(m, k) denotes the value of the keyed hash

function. h(m, k) ∈ F (2); 〈U,K,U〉.



144 P. Takács, T. Mihálydeák

H(m) Hash function - MD series, SHA series, HAVAL, RIPEM, etc..
H(m) ∈ F (1); 〈U,U〉.

Remarks:
1. ss(Σ,Ψ) is a shared secret for entities Σ and Ψ. SS(Σ,Ψ) is the set of good

sharet secrets for entities Σ and Ψ.

2. We interpret function-pairs (E2U(Σ), U2E(m); K2U(k), U2K(m);
T 2U(t), U2T (m); C2U(ch), U2C(m)) in the case of entity-, key-, time-
and channel-type variables. They make it possible to embed and take out
entities, keys, time-points and channels to/from the messages (as strings).
They represent type-conversion functions.

E - entity type
Characterization: description of communication partners. ENT is the set of all
possible entities. ENT is a finite set.
• V arE : Σ, Ψ, Γ, Λ, . . . Set of entity type variables. This set is infinite.
• ConE :
F (0)E :

A, B, C, D, U , . . . The name of entities follow traditional roles: commu-
nicating partners A, B; passive attacker E; absolutely reliable party T ,
etc..

F (n)E :
E2U(Σ) Type-conversion function: entity to message.

E2U(Σ)=′Σ′. E2U ∈ F (1); 〈E,U〉.
U2E(m) Type-conversion function: message to entity.

U2E(′Σ′)=Σ. U2E ∈ F (1); 〈U,E〉.
Remarks:
1. We interpret the sets of entities who can use the channels. In the case of

public channel ENTchi = ENT . In the case of secret channel we list the
elements of the set: ENTchi = {A,B, . . .}.
ENTchi ⊆ ENT .

K - key type
Characterization: description of keys. KEY denotes the set of all possible keys.
• V arK : Set of key type variables. This set is infinite. k general key-variable.
• ConK :
F (n)K :
ks(Σ,Ψ) Shared secret key - case of symmetric key cryptography. ks(Σ,Ψ) is

a shared secret key for entity Σ and Ψ. ks(Σ,Ψ) ∈ F (2); 〈E,E,K〉.
kΣ Public key - case of public key cryptography. kΣ is a public key of

entity Σ. kΣ ∈ F (1); 〈E,K〉.
k−1
Σ Secret key - case of public key cryptography. k−1

Σ is a secret key of
entity Σ. k−1

Σ ∈ F (1); 〈E,K〉.
kti , k

−1
ti

Time-key. kti ∈ F (1); 〈T,K〉. k−1
ti
∈ F (1); 〈T,K〉.

K2U(k) Type-conversion function: key to message.
K2U(kΣ) =′ kΣ

′. K2U ∈ F (1); 〈K,U〉.



Demonstration of the Modified CSN-logic 145

U2K(m) Type-conversion function: message to key.
U2K(′kΣ

′) = kΣ. U2K ∈ F (1); 〈U,K〉.
Remarks:
1. KS(Σ,Ψ) denotes the set of good shared keys for entites Σ and Ψ.
2. We use the ksΣΨ notation for key ks(Σ,Ψ).

T - time type
Characterization: description of the time properties of protocols. TIME denotes
the set of all possible time in the protocol. This set is finite.
• V arT : t, t1, t2, . . . ti, tj , . . ., t′, t′′, . . . Set of time type variables. This set is
infinite.
• ConT :
F (0)T :
(a) t0 is the initial time of the examined protocol.
(b) tg is time of key generation.
(c) τ is a timing point of examined protocol.
F (n)T :
T 2U(t) Type-conversion function: time to message.

T 2U(ti) =′ ti ′. T 2U ∈ F (1); 〈T, U〉.
U2T (m) Type-conversion function: message to time.

U2T (′ti ′) = ti. U2T ∈ F (1); 〈U, T 〉.
• Form:
(a) If t1, t2 ∈ TermT , then (t1 < t2) ∈ Form.

Remarks:
1. The TIME set forms a linear ordered set. It is described by the axiom

A20(a).
2. ti ≤ tj , ti > tj , ti ≥ tj formulas are interpreted.

C - channel type
Characterization: description of communication channels. CH denotes the set of
all possible channels. This set is finite.
• V arC : ch, ch1, ch2, . . . chi, chj are channel variables. This set is infinite.
• ConC :
F (n)T :
C2U(t) Type-conversion function: channel to message.

C2U(chi) =′ chi
′. C2U ∈ F (1); 〈C,U〉.

U2C(m) Type-conversion function: message to channel.
U2C(′chi

′) = chi. U2C ∈ F (1); 〈U,C〉.
Remarks:
1. It is necessary to describe the channel properties of the system. We

distinguish two types of channels for the sake of simplicity. Let us de-
note CH(chi, sec) the secure (protected) channel chi. Let us denote
CH(chi, pub) the public channel chi. If the type of the channel is given
the set of users who are able to use the channel may be given. We use the
notation ENTchi = {. . .}.



146 P. Takács, T. Mihálydeák

Operators and predicates

KΣ,tΦ Knowledge operator of Hintikka.
KΣ,tΦ means: entity Σ knows statement Φ at time t.

BΣ,tΦ Belief operator. BΣ,tΦ means:
entity Σ believes at time t that statement Φ is true.

LΣ,tx Knowledge predicate. LΣ,tx means: entity Σ knows and can
reproduce object (message or key) x at time t.

S(chi,Σ, t,m) Emission predicate. S(chi,Σ, t,m) means:
entity Σ sends message m at time t in channel chi.

R(chi,Σ, t,m) Reception predicate. R(chi,Σ, t,m) means:
entity Σ receives message m at time t in channel chi.

C(x, y) ’Contains’ predicate.
C(x, y) means: object x contains the object y.

A(Σ, t,Ψ) Authentication predicate. A(Σ, t,Ψ) means:
entity Σ authenticates entity Ψ at time t.

OΣ,t(x, y) ’Obtain’ predicate. OΣ,t(x, y) means: entity Σ can obtain ob-
ject y from object x at time t.

Inference rules
Let us denote α, β formulas; p, q statements of the language.
The inference rules of the CSN-logic are the following:
R1 α ∧ (α→ β) ⇒ β (modus ponens).
R2(a) α ⇒ KΣ,tα (generelisation rule I).
R2(b) α ⇒ BΣ,tα (generalisation rule II).
R3 (α ∧ β) ⇒ α (simplification).
R4 (α) , (β) ⇒ (α ∧ β) (conjunction).
R5 α ⇒ (α ∨ β) (addition).
R6 ¬¬α ⇒ α (double negation).
K1(a) KΣ,t(p ∧ q) ⇒ KΣ,tp ∧KΣ,tq.
K2(a) KΣ,tp ∧KΣ,tq ⇒ KΣ,t(p ∧ q).

Axioms

A1(a) KΣ,tp ∧KΣ,t(p→ q)→ KΣ,tq
A1(b) BΣ,tp ∧BΣ,t(p→ q)→ BΣ,tq
A2(a) KΣ,tp→ p
A3(a) LΣ,tx→ ∀ti ≥ t LΣ,tix
A3(b) KΣ,tp→ ∀ti ≥ t KΣ,tip
A3(c) BΣ,tp→ ∀ti ≥ t BΣ,tip
A4(a) LΣ,ty ∧ C(y, x)→ ∃Ψ ∈ ENT LΨ,tx
A4(b) C(x, x)
A4(c) C(x, y) ∧C(y, z)→ C(x, z)
A4(d) C(e(m, kΣ),m) ∧ C(d(m, k−1

Σ ),m)



Demonstration of the Modified CSN-logic 147

A5(a) S(chi,Σ, t,m)
→ LΣ,tm ∧ ∃Ψ ∈ ENTchi\{Σ} ∃ti > t R(chi,Ψ, ti,m)

A6(a) R(chi,Σ, t,m)
→ LΣ,tm ∧ ∃Ψ ∈ ENTchi\{Σ} ∃ti < t S(chi,Ψ, ti,m)

A6(b) R(chi,Σ, t,m1) ∧ C(m1,m2) ∧ OΣ,t(m1,m2) → ∃Ψ ∈ ENT ∃ti <
t ∃m3 (S(chi,Ψ, ti,m3) ∧ C(m3,m2) ∧ LΨ,tim2 ∧ OΣ,t(m1,m3) ∧
OΣ,t(m3,m2))

A7(a) LΣ,tm ∧ LΣ,tkΨ → LΣ,te(m, kΨ)
A7(b) LΣ,tm ∧ LΣ,tk

−1
Σ → LΣ,td(m, k−1

Σ )
A8(a) ¬LΨ,tkΣ ∧ ∀ti < t ¬LΨ,ti(e(m, kΣ)) ∧ ¬(∃n(R(chiΨ, ti, n) ∧

C(n, e(m, kΣ))))→ ¬LΨ,t(e(m, kΣ))

A8(b) ¬LΨ,tk
−1
Σ ∧ ∀ti < t ¬LΨ,ti(d(m, k−1

Σ )) ∧ ¬(∃n(R(chi,Ψ, ti, n) ∧
C(n, d(m, k−1

Σ ))))→ ¬LΨ,t(d(m, k−1
Σ ))

A9(a) LΣ,tk
−1
Σ ∧ ∀Ψ ∈ ENT \{Σ} ¬LΨ,tk

−1
Σ

A10(a) LΣ,t(d(m, k−1
Σ ))→ LΣ,tm

A11(a) LΓ,tm ∧ LΓ,tks(Σ,Ψ) → LΓ,t(E(m, ks(Σ,Ψ)))
A11(b) LΓ,tm ∧ LΓ,tks{Σ,Ψ} → LΓ,t(D(m, ks{Σ,Ψ}))
A11(c) LΣ,tm ∧OΣ,t(m,n)→ LΣ,tn
A11(d) LΣ,tm ∧ LΣ,tn→ LΣ,t{m,n}
A11(e) LΣ,t{m,n} → LΣ,tm ∧ LΣ,tn

A12(a) (¬LΓ,tks(Σ,Ψ) ∧ ∀ti ≤ t ¬LΓ,ti(E(m, ks(Σ,Ψ)))∧
¬(∃n(R(chi,Γ, ti, n) ∧ C(n,E(m, ks(Σ,Ψ)))))
→ ¬LΓ,t(E(m, ks(Σ,Ψ))))

A12(b) (¬LΓ,tks(Σ,Ψ) ∧ ∀ti ≤ t ¬LΓ,ti(D(m, ks(Σ,Ψ)))∧
¬(∃n(R(chi,Γ, ti, n) ∧ C(n,D(m, ks(Σ,Ψ)))))
→ ¬LΓ,t(D(m, ks(Σ,Ψ))))

A13(a) ∀Γ ∈ ENT \{Σ,Ψ} ¬LΓ,tks(Σ,Ψ) ∧ ∃Λ ∈ {Σ,Ψ} LΛ,tks(Σ,Ψ) →
ks(Σ,Ψ) ∈ {KS(Σ,Ψ)}

A14(a) ∀Γ ∈ ENT \{Σ,Ψ} ¬LΓ,tss(Σ,Ψ) ∧ ∃Λ ∈ {Σ,Ψ}LΛ,tss(Σ,Ψ) →
ss(Σ,Ψ) ∈ {SS{Σ,Ψ}}

A15(a) [A(Σ, t,Ψ) → (LΣ,tss(Σ,Ψ) ∧ ss(Σ,Ψ) ∈ {SS{Σ,Ψ}} ∧ R(Σ, t,m)) ∧
C(m, ss(Σ,Ψ)) ∧ ∀ti ≤ t ¬S(Σ, ti,m)] → KΣ,t(S(Ψ, ti,m))

A15(b) [A(Σ, t,Ψ)→ (LΣ,tkΨ∧LΣ,tm∧R(Σ, t, n)∧C(n, e(m, k−1
Ψ )) ]→ ∀ti ≤

t KΣ,t(S(Ψ, ti, n))
A16(a) LΣ,tm ∧ LΣ,tk → LΣ,th(m, k).
A17(a) h(nA, kA) = h(nB, kB) ↔ nA = nB ∧ kA = kB .
A18(a) LΣ,tm → LΣ,th(m).
A19(a) h(nA) = h(nB) ↔ nA = nB.
A20(a) ∀t ∈ TIME (t ≤ t) ∧ ∀t, s ∈ TIME (t ≤ s ∧ s ≤ t → t =

s) ∧ ∀t, s, r ∈ TIME (s ≤ t ∧ t ≤ r → s ≤ r)



148 P. Takács, T. Mihálydeák

Remarks

(M1) The type-conversion functions enable us to embed and take out entities,
keys, time-points and channels to/from the messages (as strings).

(M2) The axioms do not contain any direct reference to the digital signature.
We assume that individuals are able to prepare and verify the digital
signature. Based on axiom A7(a):
LΣ,tm ∧ LΣ,tk

−1
Σ → LΣ,t e(m, k−1

Σ ) ,
LΣ,t e(m, k−1

Ψ ) ∧ LΣ,tkΨ → LΣ,t d(e(m, k−1
Ψ ), kΨ) = LΣ,tm .

(M3) The axioms A11(c) and A11(d) contain the possibility of connecting and
decomposing the message elements.

(M4) In practice, we are simplifying the notation. We leave the marking of
the type-conversion in all cases where it is not ambiguous. For example,
we use {A, kΣ, t} instead of {E2U(A),K2U(kΣ), T 2U(t)}.

(M5) In some analyses we assume that the messages sent and received are not
the same in the case of public channels. It means the application of the
Dolev-Yao attacker model: the communication network is totally at-
tackable. The attacker can intercept, change the messages and generate
new messages.
If CH(chi, pub) and S(chi, A, t1, nA), then R(chi, B, t2, nB).
If CH(chi, sec) (channel protected) and S(chi, A, t1, nA), then
R(chi, B, t2, nA).

Péter Takács
University of Debrecen, Faculty of Health, Nyíregyháza, Sóstói Srt. 2-4.

Tamás Mihálydeák
University of Debrecen, Faculty of Informatics, Debrecen, Egyetem Sqr. 1.


