
Proceedings of the 8th International Conference on Applied Informatics
Eger, Hungary, January 27–30, 2010. Vol. 1. pp. 127–134.

Advantages of a Multi-paradigm
Programming Language in Agent-Based

Model Definition

Richárd O. Legéndiab, Attila Szabóab

aEötvös Loránd University
bAITIA International, Inc.

e-mail:{rlegendi,aszabo}@aitia.ai

Abstract
This paper describes the advantages of the Functional Agent-Based Lan-

guage for Simulations (Fables) compared to some of the most widely used
toolkits of Agent-Based Modeling (ABM). Using Fables we implemented the
StupidModel, a set of 16 simple ABM models those are designed to cover the
most common features of ABMs. We also compared it to other published
ABM platform implementations (Swarm, Repast and NetLogo) applying the
Halstead code complexity metrics. In addition we studied some other aspects
of these toolkits, e.g. the programming burden of auxiliary tasks of model
implementation.

Keywords: agent-based modeling, programming languages, software metrics

MSC: 68T42

1. Introduction

The spread of the agent-based paradigm implied the development of software tools
that supports ABM implementation. In the last years several ABM softwares has
been developed to support the need of modelers (both programmers and social
scientists). Various lists and comprehensions exist about these tools (like [1], [2] or
[3]).

Albeit ABMs can be applied to many fields, model implementations consist
only a well defined set of software elements: agent definition, agent communica-
tion, model dynamics, visualization (which is optional), and data collection (note
that visualization alone can be a complex part of the model, especially in case
of 3-dimensional surfaces). Some ABM toolkits utilize this by offering an ABM-
specific language for model implementations (like NetLogo [7]); other tools offer an

127



128 R. O. Legéndi, A. Szabó

application programming library (API) for existing programming languages (e.g.
Repast J [6] and Mason [8] for Java).

The most desirable properties that ABM-specific languages offer are compact
and also relatively simple source code, and a reduced risk of bugs. Ideally, its also
easier to get experienced with a specific language than learning any programming
paradigms (e.g. object-oriented programming) first.

The main advantage of an API is the freedom of the modeler to add arbitrary
components to a model (e.g. components, that are not offered by the API). How-
ever, when the modeler is not an experienced programmer (but a social scientist,
biologist, etc.), a general purpose programming language might be a burden to use.

The research reported herein compares the Functional Agent-Based Language
for Simulation (Fables) [9] to two widely used ABM toolkits by applying Halstead
software metrics. We used the three implementations of the same simple template
model, the StupidModel, introduced by Railsback et al. [4].

This paper structured as follows. The next section introduces the Fables lan-
guage briefly. Section 3 overviews Repast J and NetLogo. Section 4 describes how
the platforms were compared. Section 5 provides the comparation results, and
finally, we conclude the paper with a brief discussion.

2. Fables: Supporting the Methodology

Fables is a special purpose language for ABM and its integrated modeling environ-
ment that is intended to reduce programming skills required to create agent-based
simulations. Its syntax is similiar to the mathematical formalism used in the pub-
lication in the subject which make it easier to read the code. The main design
concept of Fables is to allow modelers to focus on modeling, and not on program-
ming [9].

The language was designed to have no more language elements than required
for a common model. It has defined structures for each specific part of the simu-
lation: for the model and the agents (object-oriented approach), for the behaviour
(functional approach) and for the model dynamics (initialization, stopping, agent
interactions scheduling). In this way the Fables source code is very compact and
straightforward in general.

A Fables model also splits the core model from the observer (i.e. the model
definition from the visualization). Charts can be created with a point & click
wizard in most of the cases, but custom datasources can be created through a
graphical interface and/or scripting.

3. Evaluated Tools

In the next section we briefly introduce the examined tools, describing their main
features, design concepts and goals.



Advantages of a Multi-paradigm Programming Language. . . 129

3.1. Repast 3

The Recursive Porous Agent Simulation Toolkit (Repast, [6]) is an open source
toolkit that was developed by Collier et al. at the University of Chicago. Repast 3
is an API available for different languages (like Python and .NET). In this paper
we considered using the Java based implementation.

Repast has an abstract feature set focusing on modeling social behaviour, but is
not limited to social simulation (a wide variety of applications is available ranging
from evolutionary systems to market modeling and industrial analysis). Another
advantage of Repast is its large and growing user community.

3.2. NetLogo

NetLogo [7] is a programming language from the Logo family. The primary design
goal of NetLogo was to create an educational tool for academic students to help the
learning of the basics of ABMs. It has an own, specific, easy to use programming
language, as well as high-level structures and built-in functions for the common
tasks for the model. It is one of the most popular platforms especially among the
academic modelers.

The language greatly reduces the programming skills required to make simple
simulation, hovewer it was clearly disegned for a specific model family: mobile
agents acting in a two dimensional grid having local interaction patterns. These
type of models can easily be implemented in NetLogo, but the platform is not
limited to only them.

4. Comparing the Tools

The abovementioned agent-based model development platforms differ in various
aspects, such as required programming skills, performance, or the length of code.
In the following we describe the tools used for the comparison in this article.

4.1. Halstead Software Metrics

Software metrics are measures of some specific properties of a software or its com-
ponent. These properties may be either derived from the source code only (static
code metrics, like the total line of code or instruction path length) or influenced by
some runtime behaviour as well (dynamic code metrics, like program loading time
or number of bugs per line of code) . The research field of software metrics has an
impressive literature from the ’70s ([12], [13]): computer scientists and theoreticans
tirelessly searching methods to define a measurement approach that can support
software engineers with tasks such as making predictions about scheduling, costs,
and upkeeping the reliability of a software product.

To compare the agent-based platforms we used the static Halstead software com-
plexity metrics [11]. Fundamentally, the Halstead complexity metrics are based on



130 R. O. Legéndi, A. Szabó

the number of operands and operators included in the source code. More specifi-
cally, the source code can be interpreted as a sequence of tokens. Tokens can be
classified as operators and operands. Halstead derived code complexity metrics
from the number of unique operators (n1), operands (n2), the total number of
operators (N1) and the total number of operands (N2).

Length is the total number of all operands and operators, giving a sense how large
is the code:

N = N1 + N2

Vocabulary is the total number of unique operands and operators, giving a sense
how difficult is a statement (e.g. how much different functions are present in
a source, the fewer is less complex):

n = n1 + n2

Volume uses the length and the vocabulary indicating the following information
under consideration:

V = N ∗ log2(n)

A component with a high volume value should be refactored into smaller,
simpler components. On the other hand, if volume of an analzyed compo-
nent is scarce, the component may not have been given enough content or
responsibility.

Additionally, empirical evidence suggests that these definitions can be used to
estimate further quantitive measures as:

Difficulty describes the level of difficulty required to understand and maintain
the code:

D =
n1

2
∗ N2

n2

Effort suggests level of effort required to understand and implement the code:

E = D ∗ V

The Halstead metrics are able to estimate other qualitative software attributes
(such as the the required time to create the implementation or the number of
potential bugs it may contain), but due to space limitations these aspects were
omitted in this paper.



Advantages of a Multi-paradigm Programming Language. . . 131

4.2. StupidModel

Railsback et al. defined a simple template model [4] for the following two major
goals:

1. to provide template code for commonly used ABM features which can be
used as a teaching tool for learning how to write ABM’s

2. to compare ease of implementation of models in a variety of ABM platforms.

StupidModel 1-16 is an incremental series of models. In the first model bugs are
moving on a grid randomly. Each following model extends the previous model by
adding a common ABM feature to it (e.g. in StupidModel 2, constant bug growth
is introduced). In the last model predators hunt the bugs, and bugs comsume the
food available at their current cells; they also breed at a certain energy level, and
die naturally afterwards.

Railsback et al. implemented this basic model in the most popular modeling
environments including Swarm, Repast, Mason and NetLogo, and evaluated their
capabilities through various metrics [5].

In this paper we made a contribution to this list: we implemented the Stupid-
Model in Fables, and examined the design concepts, drawbacks and features of
Fables, Repast and NetLogo.

5. Results

Table 1 contains the results for models 1, 8, and 16. As each model is derived incre-
mentally from the previous one, the complexity of the models grows monotonously.
Because of this, here we only provide results for StupidModel 1, 8, and 16: these
results are enough to examine the trends of the code metrics in case of increasing
code complexity.

The difference between an API and a specific programming language is clear
from the results. Figure 1 shows that when using a specific language (NetLogo or
Fables), all of the basic measures (that are used to calculate the complexity metrics)
are far below the Repast J API-implementation’s results in case of StupidModel 16.
That is, model implementation in Repast requires a lot more effort than in the other
two: the code of StupidModel 16 consists three times more tokens than any of the
others, and its source code is distributed in five source files (for NetLogo or Fables,
one file is enough).

According to the applied metrics, NetLogo requires the less programming effort
(see Table 1 for results). It turned out that Fables use somewhat more operators
and operands to describe a model (therefore the Halstead metric values are higher
too). However, the number of unique operators show an interesting trend. While
the Repast and NetLogo StupidModel 16 implementations consists significantly
more uniqe operators than in StupidModel 1 (41 and 25, and 28 and 12 respectively),
there’s no significant change in case of the Fables implementations (29 and 26). It



132 R. O. Legéndi, A. Szabó

Table 1: Halstead metrics results for Repast J 3.1, NetLogo, and
Fables inplementations of StupidModel 1, 8, and 16.

StupidModel1 StupidModel8 StupidModel16

Metric RP NL F RP NL F RP NL F

lines 82 29 32 257 82 68 541 177 124
files 2 1 1 3 1 1 5 1 1
funcs 8 3 9 33 6 14 64 9 26
calls 36 7 17 89 30 34 225 83 64
operators 81 32 63 245 77 132 519 198 266
operands 173 55 107 546 138 203 1135 375 425
uniqe ops 25 12 26 27 22 29 41 28 29
uniqe oprs 82 23 39 214 55 71 390 116 108
Length 254 87 170 791 215 335 1654 573 691
Vocabulary 107 35 65 241 77 100 431 144 137
Volume 1712 446 1024 6259 1347 2226 14475 4108 4905
Difficulty 26 14 36 34 28 42 60 45 57
Effort 45158 6403 36516 215588 37187 92272 863585 185939 279865
Length’ 637 147 328 1785 416 578 3577 930 870

RP: Repast results, NL: NetLogo results, F: Fables results

means that when someone can implement the most simple model in Fables, she
can also implement a relatively complex model using the same restricted words (or
"instruction set") – which is an important advantage of the language.

6. Conclusions

We compared the Fables language to the widely used agent-based model definition
tools Repast 3 and NetLogo, and also measured the imlementation burden related
to these software. We argue that ABM-specific languages are the future for agent-
based modeling as they require substantially less implementation effort than APIs
for existing general purpose programming languages.

We found that modeling in NetLogo - which is a widely used ABM platform in
education nowadays - results shorter code compared to Fables. It was also revealed
that a simple Fables model consists the same operators as a complex one. This
is an important feature, which makes Fables ideal for non-programmers, and for
eductional purposes.

7. Acknowledgements

The work reported herein benefited from the partial support of the Hungarian
Government via the TAMOP project (grant TAMOP-4.2.1/B-09/1/KMR-2010-
0003), which is gratefully acknowledged.



Advantages of a Multi-paradigm Programming Language. . . 133

Figure 1: Change in the basic metrics: number of operators (upper
left figure), number of operands (upper right figure), number of
unique operators (lower left figure), and number of unique operands

(lower right figure).

References

[1] Comparison of agent-based modeling software
http://en.wikipedia.org/wiki/Comparison_of_agent-based_modeling_
software

[2] Swarm Development Group Wiki, Tools for Agent-Based Modelling
http://www.swarm.org/wiki/Tools_for_Agent-Based_Modelling

[3] Leigh Tesfatsion, General Software and Toolkits Agent-Based Computational Eco-
nomics and Complex Adaptive Systems
http://econ2.econ.iastate.edu/tesfatsi/acecode.htm

[4] Steven F. Railsback, Steven L. Lytinen, and Stephen K. Jackson, Stupid-
Model and Extensions: A Template and Teaching Tool for Agent-based Modeling
Platforms (2005).

[5] Steven F. Railsback, Steven L. Lytinen, and Stephen K. Jackson, Agent-
based Simulation Platforms: Review and Development Recommendations. Simula-
tion Vol. 82, No. 9 (2006), 609–623.

[6] North, M.J., Collier, N.T., Vos, J.R., Experiences Creating Three Implemen-
tations of the Repast Agent Modeling Toolkit, ACM Transactions on Modeling and
Computer Simulation Vol. 16, Issue 1, pp. 1–25, ACM, New York, USA (2006).

[7] Wilensky, U., NetLogo. Center for Connected Learning and Computer-Based Mod-
eling, Northwestern University. Evanston, IL (1999).
http://ccl.northwestern.edu/netlogo/



134 R. O. Legéndi, A. Szabó

[8] Luke, S., Balan, G. C., Panait, L., Cioffi-Revilla, C., and Paus, S. MA-
SON: A Java Multi-Agent Simulation Library. Proceedings of the Agent 2003 Con-
ference. (2003).

[9] Legéndi, R., Gulyás, L., Bocsi, R., and Máhr, T., Modeling Autonomous
Adaptive Agents with Functional Language for Simulations. Lecture Notes In Artifi-
cial Intelligence, Vol. 5816., 449–460 (2009).

[10] Cem Kaner, Walter P. Bond, Software Engineering Metrics: What Do They
Measure and How Do We Know?, Metrics (2004).

[11] Halstead, M. Elements of Software Science, North Holland, Amsterdam (1977).

[12] Wolverton, R. W., The Cost of Developing Large-Scale Software. IEEE Trans.
Computers C-23, Vol. 6 (1974), 615–636.

[13] Perlis A., F. Sayward, and M. Shaw Software Metrics: An Analysis and Eval-
uation. MIT Press (1981).

Richárd O. Legéndi
Eötvös Loránd University, Pázmány Péter sétány 1/C, Budapest 1117, Hungary,
AITIA International, Inc., Czetz János u. 48-50., Budapest 1039, Hungary

Attila Szabó
Eötvös Loránd University, Pázmány Péter sétány 1/C, Budapest 1117, Hungary,
AITIA International, Inc., Czetz János u. 48-50., Budapest 1039, Hungary


