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Abstract

There are several attempts to automate tableau calculi in first-order clas-
sical logic. The combining of tableaux and resolution is one of the directions
of such investigations. In some published papers of ours, we proposed a gen-
eral splitting technique on resolution derivations, by applying tableaux to
represent distinct branches of derivations. In order to make tableaux suffi-
cient for such a role, an additional and costy test must be applied for each
clause which is being generated during a resolution derivation. In this paper,
we investigate if it is worth to apply our splitting technique in practice, by
empirical tests. For the sake of empirical investigations, we implemented sev-
eral resolution calculi in Java, and then we improved each of them with our
tableau method. Then, each of the implemented calculi have been executed
over 1642 TPTP problems. In this paper, we present the results, from several
aspects, and then, we conclude that tableaux are worth to be combined with
resolution.

1. Introduction

In the last decades, tableau calculi have proved to be very expressive, easy to use,
easy to implement, and quite universal in computer-based reasoning. Originally,
Raymond Smullyan proposed this type of calculi in his famous book “First-Order
Logic” [15]. In general, a tableau can actually be regarded as a graph whose vertices
are labeled with logical formulas. The majority of tableau calculi apply not a general
graph but rather a tree, like Smullyan’s analytic tableau calculi [15].

It is a quite exciting question if it is worth to combine resolution-based and
tableaux-based reasoning methods. Hyper tableau calculi (e.g., hyper tableaux [2,
3], constrained hyper tableaux [6], rigid hyper tableaux [11], and hyperS tableaux
[8, 9] etc.) are well-known as attempts to combine hyper-resolution and tableaux.
In this paper, we propose a general idea for combining resolution calculi and
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tableaux. The goal is the same as in the case of hyper tableau calculi: to split
(hyper-)resolution derivations into branches. First, we propose a general way
of representing any resolution calculus (and illustrate it by examples), and then
we introduce a novel method called resolution tableaux. Resolution tableaux are
more general than hyper tableaux, since any resolution calculus (not only hyper-
resolution) can be applied, like, e.g., binary resolution, input resolution, or lock
resolution etc. We prove that any resolution tableau calculus inherits the sound-
ness and the completeness of the resolution calculus which is being applied. By
the use of resolution tableaux, any resolution derivation can be split into separate
branches, hence resolution tableaux can be regarded as a kind of parallelization of
resolution, as it will be illustrated by an example.

The structure of the paper is as follows. In Section 2, basic definitions and
concepts are introduced. We propose resolution tableaux in Section 3, and then we
give details on the results of empirical tests in Section 4.

2. Preliminaries

In the followings, we assume that the reader is familiar with the basic concepts of
first-order logic. Nevertheless, let us present a few crucial concepts.

A literal is a formula either A or ¬A where A is an atomic formula. A is
classified as a positive, ¬A as a negative literal.

A clause is a formula L1 ∨ L2 ∨ . . . ∨ Ln where n ≥ 0 and each Li is a literal
(i = 1, . . . , n). A clause can also be regarded as the set of its literals. The empty
clause is denoted by ⊥.

A clause is positive (negative) iff it consists of solely positive (negative) literals.
Two clauses are independent iff there is no variable that occurs in both of them.
Cσ is called an instance of a clause C where σ is a variable substitution. Cσ

is a new instance if σ is a variable renaming and its range consists solely of new
variables.

A clause C subsumes a clause D iff C has an instance Cσ such that Cσ ⊆ D.
Given a formula A, let ∀A denote the universal closure of A.
As usual, M |= A denotes the fact that a formula A is satisfied by a model M .

In the case of A being open, M |= A iff M |= ∀A.
Two formulas A and B are equivalent (denoted by A ∼ B) iff for any model M :

M |= A iff M |= B.
As it is well-known, the most general unifier (MGU) of two atomic formulas

A and B is the most general variable substitution σ such that Aσ = Bσ. Let us
generalize the definition of MGUs, as follows. The MGU of (A1, B1), (A2, B2), . . . ,
(An, Bn), where all Ai and Bi are atomic formulas, is the most general variable
substitution σ such that Aiσ = Biσ for all i = 1, . . . , n.

Tableaux are regarded as trees whose which vertices are labeled with formulas
[15, 7]. Sometimes, for the sake of briefness, we regard a tableau as the set of all
its branches. Similarly, a branch is often regarded as the sequence or the set of all
the vertices in the branch. Furthermore, let us introduce the following notation:
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Notation 2.1. Let N be a vertex set from a tableau.

1. Let N̂ denote the conjunction of all the labels (formulas) in N .

2. Let

̂

N denote the disjunction of all the labels (formulas) in N .

Sometimes it is needed to regard a tableau as a sole formula. This is why we need
the following definition:

Definition 2.2 (Formula Represented by a Tableau). The formula F (T ) repre-
sented by a tableau T is defined inductively as follows:

1. If T consists of one single vertex labeled with a formula L, then

F (T ) = L

2. If T is a compound tableau, i.e., it is in the form as can be seen in Figure 1,
where L is a formula and each Ti is a tableau, then

F (T ) = L ∧
(

n∨

i=1

F (Ti)

)

T1 T2
. . . Tn

L

Figure 1: Compound tableau.

Let us note the following obvious fact, which says that any tableau can be regarded
as the disjunction of its branches (as conjunctions).

Lemma 2.3. For any tableau T ,

F (T ) =
∨

B∈T

B̂

3. Resolution Tableaux

The aim is to introduce a general method for combining resolution calculi and
tableaux. This is why a general way of representing resolution calculi is required.
We regard a resolution calculus as a set of inference rules, which act on clauses.
Each resolution inference rule is represented as a function which can assign a clause
to one or more clauses. Every time when applying such a rule, it is needed to specify
a clause set (denoted by I and called the input clause set) and a sequence of clauses
(denoted by d and called the resolution derivation).
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Definition 3.1 (Resolution Inference Rule). A resolution inference rule is a func-
tion resI,d : Dom 7→ C, where

• I is a finite set of clauses;

• d is a finite sequence of clauses;

• C is the set of all the clauses;

• Dom ⊆ P (C).
Let us illustrate by examples how well-known resolution calculi can be represented
in this form. Of course, other resolution calculi could be represented in a similar
way1.

Example 3.2 (Binary Resolution). The resolution calculus, as was introduced by
Robinson [13], can be represented by the set of the following resolution inference
rules [1]:

1. Binary Resolution:

binresI,d

(
A ∨ C , ¬B ∨D

)
= (C ∨D)σ

where σ is the most general unifier (MGU) of the atomic formulas A and B.

2. (Positive) Factoring:

factorI,d

(
C ∨A ∨B

)
= (C ∨A)σ

where σ is the MGU of the atomic formulas A and B.

Example 3.3 (Linear Input Resolution). The linear input resolution calculus [5]
can be represented by the same resolution inference rules as binary resolution, but
the rule “Binary Resolution” is restricted as follows:

• one of the clauses C ∨A and D ∨ ¬B must be the last element of d;

• the other one must be an element of I.

Example 3.4 (Hyper-Resolution). The (positive) hyper-resolution calculus, as
was introduced by Robinson [14], can be represented by the following resolution
inference rule:

hypresI,d( A1 ∨ C1 , . . . , An ∨ Cn , ¬B1 ∨ . . . ∨ ¬Bn ∨D )
‖

(C1 ∨ . . . ∨ Cn ∨D)σ

where
1It is to be remarked that I may be defined as a clause sequence (instead of a clause set) in

the case of some resolution calculi, where the order of input clauses should not be neglected, like
in SLD-resolution [10] and in lock resolution [4, 1, 5].
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• n ≥ 1;

• Ci is a positive or empty clause (i = 1, . . . , n);

• D is a positive or empty clause;

• Ai and Bi are atomic formulas (i = 1, . . . , n);

• σ is the MGU of (A1, B1), . . . , (An, Bn).

When a resolution calculus (as a set of resolution inference rules) is given, an
appropriate tableau can be constructed for a given input clause set I. Such a
tableau is called a resolution tableau, and can be constructed in a quite simple way.
In every deduction steps, some clauses are to be selected, each either from a given
branch of the tableau or from the input clause set I. To the selected clauses a
resolution inference rule is applied, resulting in a clause D. First D must be split
into independent subclauses, and then these subclauses are attached to the given
branch, forming distinct new branches.

Let us define resolution tableaux inductively, as follows:

Definition 3.5 (Resolution Tableaux). Let R be a set of resolution inference
rules. Let I be a clause set.

1. One single vertex labeled with ⊤ is a resolution tableau for I w.r.t. R.

2. • Let T be a resolution tableau for I w.r.t. R.

• Let B be a branch of T .
• Let C1, . . . , Cn be new instances of clauses in I ∪B.
• Let res ∈ R such that resI,B is defined on C1, . . . , Cn, and let

D = resI,B(C1, . . . , Cn)

• Let D = D1∨. . .∨Dk such that each distinct Di and Dj are independent
clauses (i, j = 1, . . . , k).2

The tableau that can be seen in Figure 2 is a resolution tableau for I w.r.t.
R.

Let us point out that it is mandatory to generate new instances of the clauses
which have been selected. Note that resolution tableau branches can be regarded
(and are used) as separate resolution derivations.

A tableau calculus is regarded sound and complete in the following case: any
clause set I is unsatisfiable iff a closed tableau exists for I. A closed resolution
tableau is defined as follows:

2Furthermore, one can additionally demand that no Di can further be split into independent
subclauses (i = 1, . . . , k). In this case, decomposition of clauses is unique, and can easily be solved
algorithmically.

3New vertices labeled with D1, . . . , Dk are attached to the leaf of B.
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T
B

D1 D2
. . . Dk

Figure 2: Attaching a clause to a branch B of a resolution tableau
T .3

Definition 3.6 (Closed Resolution Tableaux). A resolution tableau is closed iff
each of its branches contains ⊥.

Assume a resolution calculus R which is sound and complete in first-order logic
(or in a fragment of first-order logic). It is quite obvious that the resolution
tableau calculus applying R inherits soundness and completeness. For example,
since hyper-resolution is sound and complete in first-order logic, so is the hyper-
resolution tableau calculus4. The linear input resolution tableau calculus5 is sound
and complete in Horn logic.

Theorem 3.7. If a resolution calculus R is sound and complete (in a fragment of
first-order logic), then so is the resolution tableau calculus applying R.

Proof.

1. Soundness:
It is to show that if there is a closed resolution tableau for I w.r.t. R, then
I is unsatisfiable.

If R is sound, then each inference rule res ∈ R preserves satisfiability. Let

res(C1, . . . , Cn) = D1 ∨ . . . ∨Dk

where each distinct Di and Dj are independent. It can be seen that for any
model M :

if M |= C1, . . . , Cn, then M |= D1 ∨ . . . ∨Dk.

Because of independence:

∀ (D1 ∨ . . . ∨Dk) ∼ ∀D1 ∨ . . . ∨ ∀Dk

Summing up, for any model M :

if M |= C1, . . . , Cn, then M |= D1 or M |= D2 or . . . or M |= Dk.
4I.e., the resolution tableau calculus applying hyper-resolution.
5I.e., the resolution tableau calculus applying linear input resolution.
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Hence, if I was satisfiable, then at least one branch could not be closed.

2. Completeness:
It is to show that if I is unsatisfiable, then there is a closed resolution tableau
for I w.r.t. R.

This fact is even more obvious than in the case of soundness. Since R is
complete, there is a resolution refutation from I. Each tableau branch can
actually be regarded as a “simplified” variant of that refutation, i.e., only
subclauses occuring in the refutation can occur in the branch. Since ⊥ is
deduced in the refutation and all literals of the clauses can be resolved out,
obviously ⊥ can occur in each branch.

�

Note that the fact that D1, . . . , Dk are pairwise independent has been employed
only in the soundness proof.

Example 3.8 (Linear Input Resolution Tableaux). Consider the following input
clause set:

I =





M(a, s(c), s(b))
P (a)

M(x, x, s(x)) ∨D(y, x)
¬M(x, y, z) ∨D(x, z)

¬P (x) ∨ ¬M(y, z, u) ∨ ¬D(x, u) ∨D(x, y) ∨D(x, v)
¬D(a, b)





a, b, c are constants, u, v, x, y, z are variables.
In Figure 3, a closed resolution tableau for I w.r.t. linear input resolution (c.f.

Example 3.3) can be seen.
First, the input clauses ¬P (x) ∨ ¬M(y, z, u) ∨ ¬D(x, u) ∨ D(x, y) ∨ D(x, v)

and ¬D(a, b) are selected; the atomic formulas D(x′, y′) and D(a, b) are resolved
upon by MGU {: =x′a, : = y′b}. As can be seen, the resolvent is split into four
independent subclauses. Three branches can obviously get closed by resolving
with the unit input clauses P (a) and ¬D(a, b).

Let us focus on the branch which contains ¬M(b, z′, u′) ∨ ¬D(a, u′). Since the
basis is linear input resolution, this clause (as the label of the last vertex in the
branch) must be resolved with an input clause. Currently, that input clause is
M(x, x, s(x)) ∨D(y, x). The resolvent is split into two subclauses.

The consequent steps can be similarly performed.

4. Empirical Investigations

In order to examine the practical usefulness of resolution tableaux, we implemented
four different resolution calculi: binary resolution, linear resolution, linear input
resolution, and hyper-resolution. Let us emphasize that purely the basic variants
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⊤

¬P (a)

⊥

¬M(b, z′, u′) ∨ ¬D(a, u′) D(a, v′)

⊥¬D(a, s(b))

¬M(a, y′′, s(b))

⊥

D(y′, b)

⊥

1

2

3

Selected input clauses:

1: M(x, x, s(x)) ∨D(y, x)
2: ¬M(x, y, z) ∨D(x, z)
3: M(a, s(c), s(b))

Figure 3: Closed linear input resolution tableau.

of those calculi have been implemented. We also implemented improved variants
of the aforementioned calculi, only by applying resolution tableaux.

Then, we tested all the original and improved calculi on 1642 TPTP problems
[16] (from 232 files). As it had been expectable, those calculi could not solve most
of the problems in a reasonable time limit. What we primarily tried to investigate
are the following questions:

• How often an improved calculus can solve such a problem that the original
calculus cannot solve?

• If both an original calculus and its improved variant can solve a problem,
how much time is gained by using the improved calculus?

Solution Time
gained lost gained lost gained/lost

Binary 0.49% 0.59% 10.91% 29.09% 2.93%
Linear 12.3% 0% 7.45% 0.62% 626.67%
Linear input 27.57% 0% 4.48% 0% –
Hyper 2.01% 0.97% 46.46% 18.77% 310.43%

Table 1: Empirical results.

Table 1 contains all the statistical data we have collected. Let us give an overview
on the columns of the table:
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• In connection with those cases when either an original calculus or its improved
variant does not provide a solution (in a reasonable time limit) for the same
problem, let us summarize the following data:

1. Gained solutions: The frequency of those cases when the original
calculus does not provide a solution, but the improved calculus does.

2. Lost solutions: The frequency of those cases when the original calculus
provides a solution, but the improved calculus does not.

• In connection with those cases when both an original calculus and its im-
proved variant provide a solution for the same problem, let us summarize the
following data:

1. Gained time: The frequency of those cases when the improved calculus
provides a solution in less time than the original calculus.

2. Lost time: The frequency of those cases when the improved calculus
provides a solution in more time than the original calculus.

3. Gained time/Lost time: We calculated the ratio of the length of the
gained time to the length of the lost time in order to illustrate how it is
worth to apply the improved calculus, in respect to execution time.

As it can be noticed, binary resolution tableaux do not seem very practical, in
contrast with linear resolution tableaux and linear input resolution tableaux, which
are absolutely worth to apply.

The conclusion in the case of hyper-resolution tableaux is quite ambiguous.
Since hyper-resolution itself can be regarded as a quite powerful proof method, only
in a few cases can hyper-resolution tableaux provide extra solutions. Nevertheless,
the frequency of the cases when hyper-resolution tableaux shorten execution time
is extremely high.

5. Conclusion

We proposed a novel technique for enhancing resolution calculi by applying table-
aux, in order to split resolution derivations, i.e., practically speaking, to parallelize
resolution. We proved that the resulting calculus inherits the soundness and the
completeness of the resolution calculus which is being applied.

In order to investigate whether our approach is worth to employ, we ran em-
pirical tests. 4 resolution calculi (binary resolution, linear resolution, linear input
resolution, and hyper-resolution) were chosen to be implemented in Java. We also
implemented their improved variants, i.e., we enhanced them by applying tableaux.
Then, we chose 1642 TPTP problems, which we loaded by the use of the ANTLR
Parser Generator, and finally, for all those problems, all chosen calculi were exe-
cuted. We made statistical analysis in order to show that resolution tableaux are
quite advantageous.
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However, one could note that the testing on TPTP problems does probably
not provide life-like scenarios. TPTP problems do mostly formalize quite special
situations and targeted to testing the capabilities and the overall performance of
theorem provers. Nevertheless, a future plan of ours is to test our approach on
deductive databases, since

• databases store a huge amount of data, thus, the shortening and parallelizing
of derivations is worth considering;

• data tables consist of ground literals, thus, it is probably very often that
clauses can be split into subclauses.
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