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1. Introduction

Fuzzy technology became a very important controlling method in complex systems
where traditional methods are unsuccessful. It was proved in [19] that fuzzy rule
systems can be used as general approximators of any complex continuous systems.
The key element of the approximation process is the construction of the correspond-
ing fuzzy rule system that encapsulates the knowledge on the problem domain. A
fuzzy rule base is defined as a set of deduction rules of the form

Wi1Wi2Wi3 · · ·WiM

Wi
(i = 1, . . . , N)

where Wik, Wiare literals of the form ak = Aik, b = Bi and i denotes the index of
the rule. In the rules

a : linguistic variable of the antecedent space,
b : linguistic variable of the consequence space,
A: a linguistic value in the antecedent space,
B : a linguistic value in the consequence space,
N : number of rules,
M : number of linguistic variables in the antecedent space.

The rule base can be considered as mapping from the Cartesian product of an-
tecedent space into the consequence space

f : D1 ×D2 × ...×DM → D

where
Di: the domain of the antecedent space of ak

D: the domain of the consequence space of b.
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In the classical approach, the Didomains are defined in the Euclidean space.
Usually, the rules are generated by human experts based on the gained experiences
in the problem domain. The definition of the rule system is a very critical phase as
the quality of the control system depends on the correctness of the included rule
system. In the case of complex systems the discovering of the hidden rules is a
time consuming process for the experts too. In order to improve the efficiency of
rule generation some kind of automatic rule generation method can be applied in
the control system. These systems usually generate the rule base with some kind
of analysis of the training data. The main benefits of automatic rule generation
engines using numerical approximation are among others the followings: it can
manage model-free system; it can process large training pools and it can provide
a high time- and cost-efficiency. In the last decades, there were several methods
developed to solve the rule generation problem.

One of the first proposals for automatic fuzzy rule generation was given in
the work of Wang and Mendel [7]. The proposed model uses one-dimensional D
domains and it divides the input and output domains into disjoint fuzzy regions.
A fuzzy membership function is assigned to each region as shown in Fig 1. Here,
five regions are defined where the regions are denoted by S2 (small 2), S1 (small
1), CE (central region), B1 (big 1), B2 (big 2).

Figure 1: Fuzzy regions and membership functions [7]

As it can be seen in Fig 1, each region has its own membership function (lin-
guistic value) where the shape of each membership function is triangular. The
support of the triangular membership function covers not only its own region but
the neighboring regions too. In the next step of the processing, a set of base rules
is generated from the training pool. In the training pool, the training elements are
given in the form

(x ∈ DI , y ∈ D0)

where DI denotes the input domain and D0 is the symbol of the output domain.
For every training elements a fuzzy rule is created in the form

IF x is X THEN y is Y

or in our notation
x = X

y = Y
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where X and Y denotes linguistic values from the corresponding domain. In order
to reduce the number of rules, an importance filtering is performed. The weight of
a rule is given as

d

(
x = X

y = Y

)
= mX(x) ·mY (y).

where mX(x)denotes the value of the membership function Xat position x. Based
on this importance weight, the rules below a threshold value are eliminated from
the rule system. In the literature, some improvement of the base algorithm can be
found, that perform additional post processing of the rule base to provide a better
filtering result.

In [2], the rules are generated using a clustering algorithm. In the antecedent-
consequence domain space, the training examples lying near to each other will
belong to the same rule. The method partitions the input space into hyper rect-
angles and defines a fuzzy rule for each cluster. The objective function measures
the density and typicality of the distribution. A specialty of this approach is that
is uses a Gaussian membership function instead of the usual triangle format.

In the approach of [5], a genetic algorithm was developed to determine the rule
systems. The goal of the stochastic optimization is to determine the rule base
containing those rules that

– have a great frequency value
– have a big set of positive examples
– have no negative examples

Every chromosome of the rule base represents a fuzzy rule. The proposed method
uses the traditional selection, crossover and mutation operators to determine the
winner chromosomes. The fitness function calculates the covering values for every
training example. The covering value for e = (x ∈ DI , y ∈ D0) is given as

C(e) =
∑

di(e)

where di()denotes the weight of the i-th rule.
In [4], a hybrid method is applied to generate the rule system. A human expert

defines the set of linguistic values in the preparation phase. After determination of
the values, a genetic algorithm is applied to define the best matching rule base. In
the second phase, after having a rule base, a second genetic algorithm is executed
to refine the shape of the membership function for the linguistic values.

One of the latest improvements is presented in the paper [3] from 2005. The
proposed method is a combined genetic algorithm – gradient based optimization
method. The genetic algorithm is used to find those features of the input with
which the separation of classes is optimal. The second step of the method refines
the initial fuzzy membership functions in order to give better accuracy. The model
is novel in the sense that logical information is directly available and that the fuzzy
membership functions are optimized instead of the network weights, so that there
is no need to round the weights to integers and thus lose information because of it.
The rules are concise and easily understandable because of their disjunctive normal
form which is guaranteed by the special network structure.
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Summarizing the literature, it can be seen that several approaches exist for
generation of fuzzy rule base. Beside the trivial enumeration method several soft
computing algorithms were adapted for this problem, like genetic algorithm, neural
network or clustering. Our investigation focuses on analysis of cross entropy method
for rule base optimization.

2. Rule generation algorithm with CE method

Due to simplicity, only one dimensional antecedent domain is used and only one
output rule exists in the investigation domain. The input of the module is the
training set

T = {ei(xi, yi)}.
The output is the generated rule base that can be given as one dimensional fuzzy
associative memory (FAM) in the form of table:

A1 A2 A3 A4 A5 An

α1 α2 α3 α4 α5 αn

where Ai are the generated linguistic values in the antecedent space and αi are
membership values for the single output value. Our method uses a model-based
approach: it is assumed that the fuzzy membership functions have a sphere shape
in one dimensional space. Three parameters are used to describe the membership
function:

– center of the sphere (ci)
– internal radius (core) (ri)
– external radius (support) (Ri)

and one parameter is needed for the rule base:
– the weights of the antecedent values (αi)

In the model, the number of input linguistic values is fixed, it is set to K. The goal
is to find the optimal parameter quartet for the K linguistic values. The objective
or fitness function is defined as follows:

E =
∑

T

(⋃

K

(mi(xj))− yj

)2

where
- mi denotes the membership function of the i-th linguistic value, it has the follow-
ing shape:

mi(x) =





0, if d(x, ci) ≥ Ri

1, if d(x, ci) ≤ ri
1− x−ci−ri

Ri−ri
, if ci + ri ≤ x ≤ ci +Ri

x−ci+Ri

ri−Ri
, if ci −Ri ≤ x ≤ ci − ri

-
⋃

K denotes the maximum, disjunction of the membership values for the set of
linguistic values.
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The proposed approach is based on the concept of cross entropy (CE) optimiza-
tion. The main concept of the CE optimization method can be summarized in the
followings [1]. Let X = (X1, X2, ..., Xn) be a random vector taking values from
some real space. Let {f(, v̄)}be a family of probability density functions on this
space, where v̄is the parameter vector. For any measurable function H , the mean
value can be calculated as

Ev̄(H) =
∫
H(x)f(x, v̄)dx

The symbol S(X̄) denotes a real valued objective function. The goal of the inves-
tigation is to find the maximum of S(X̄) over X̄and to determine the position of
the optimum value:

S(x∗) = max{S(x)}
The probability that S(X̄) is greater than some γ under given f(x, ū) can be
expressed as

Pū(S(X) ≥ γ) = Eū(I{S(X) ≥ γ})
where I{} denotes the indicator function. The goal is to find such f(x, ū)density
function that is a good approximation of the measured indicator function I{S(X) ≥
γ}. A particular convenient measure of distance between two density functions is
the Kullback-Leibler distance

d(g, h) = E

(
ln
(
g(X)
h(X)

))

From this formula follows that at the optimum position
∫
g(x) ln(h(x))dx→ max

and
Eū(I{S(X) ≥ γ} ln(f(x, ū))→ max

hold. These formulas represent the cross entropy value. To determine the optimum
value of ūfrom a smaller set of examples, the importance sampling method is applied
to calculate the mean value. During the iteration, the ūat level t is calculated as
follows:

ūt = arg max
ū
{Eū(I{S(X) ≥ γ} ln(f(x, ū))}

The main steps of the optimization algorithms are
– 1: determine the initial distribution
– 2: generate a sample with the actual ūt parameter, where t denotes the

iteration level
– 3: compute the (1 − p)-quantile γt from the sample
– 4: if γtdoes not differ from the values of the previous iteration levels, it is

used as optimum value and the algorithm terminates; otherwise go to point
5
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– 5: solve the optimization equation to determine the ūt+1 and go beck to step
2

The main idea of the CE method is to refine the samples for calculating the objec-
tive function in an iteration loop. The samples are used to estimate the parameters
of the probability density function. The optimum of the objective function depends
on these parameters and the goal of this stochastic optimization method is to de-
termine the optimum parameter setting in a small number of iterations.

3. Experiments

In the test system, the fuzzy values are given by trapezoid membership functions
with three parameters. The random parameters are generated with a normal dis-
tribution having σ = 1 and

f(x, ū) =
1√
π
e−(x−u)2

Using the normal probability density function, we get that

Eū(I{S(X) ≥ γ} ln(f(x, ū))→ max

is met if
Eū(I{S(X) ≥ γ}(c− (x− u)2)→ max

holds. Based on these equations, we get that the parameters of the next level are
calculated on the following way:

ut =
N∑

i=1

I{S(Xi) ≥ γ} ·Xij

I{S(Xi) ≥ γ}

A minimal training data set is used with 21 sample elements. The shape of the
training samples is given if Fig 2.

Figure 2: Training sample
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In the optimization procedure, the number of approximating values, K is an input
parameter. For the case K = 2, there are 6 parameters to optimize. To measure
the goodness of the approximation, the following distance function was generated:

d(T,A) =
∑

i∈T

min
j∈K
{dyi(xi, Aj)}

where
(xi, yi): the sample training data pair from T ,
Aj : the i-th fuzzy value of the approximation system A,
dα: the distance defined on the α-cut level.

Using this distance function, the optimization algorithm shows a relative fast con-
vergence to the optimum value as it is shown if Fig 3.

Figure 3: Approximation rate

Reducing the search space only to two parameters (positions of the centers) and
setting the radius values to 0.5, the yielded objective function is a function with
two parameters. The optimum position is near to the position the general solution
but with a higher distance value (as the radiuses are fixed). The surface of this
objective function is shown in Fig 4.

Figure 4: Objective function
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4. Summary

The performed analysis shows that the optimization using the cross entropy mea-
sure is a good alternative stochastic optimization method. The method provides a
very general optimization framework with a relative efficient approximation rate. In
the domain of fuzzy control systems, the proposed method can be used to generate
the appropriate fuzzy variables matching the experimental training set on control
rules. In the next phase of the investigation, the problem domain with several
target linguistic variables will be analyzed with the CE optimization method.
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