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Abstract

In this paper we show the principle of information diffusion by using the
properties of quasi-triangular fuzzy numbers and we apply this principle to
construct a diffusion-neural-network for the banded approximation of the
exchange rates.
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1. Introduction

Generally, the data are facts characterizing the phenomenon of the real world
and information is such a structured sample of these data that helps the exploration
of the phenomenon. In many cases the data are only a part of the facts, so the
information deduced from them is uncertain. For example: if there are only few
observations to the examination of a phenomenon then the information concluded
will be uncertain.

If there are only few data available in the examination of a phenomenon we can
assign these to some already existing statistical distribution (the Bayes method).
The structured sample will have an informational value. The question arises: what
to do in the case when we do not know a priory statistical distribution? Many
successful solutions of the practical problems show that in such a case the theory
of fuzzy sets can be applied with a very good efficiency (L. A. Zadeh, 1975).

The present paper deals with the diffusion principle known from the theory of
the fuzzy sets and the application of the principle. In the first part we explain the
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basic concepts of quasi-triangular fuzzy numbers with the help of the triangular
norm. In the second part we show the principle of information diffusion with the
help of the quasi-triangular fuzzy numbers. In the third part we apply the principle
of information diffusion to construct an artificial neural networks for the banded
approximation of the exchange rates.

2. Quasi-triangular fuzzy numbers

The fuzzy set concept was introduced in mathematics by K. Menger in 1942,
and reintroduced in the system theory by L. A. Zadeh in 1965.

Definition 2.1. Let X be a set. A mapping µ : X → [0, 1] is called membership
function, and the set Ā = {(x, µ (x)) : x ∈ X} is called fuzzy set on X. The mem-
bership function of Ā is denoted by µĀ. The collection of all fuzzy subsets of X
we will denote by F (X).

The construction of membership function of fuzzy numbers is an important
problem in vagueness modeling. Theoretically, the shape of fuzzy numbers must
depend on the applied triangular space. The membership function must be defined
in such a way that the change of the triangular norm modifies the shape of fuzzy
number, but the calculus with them remain valid.

We noticed that, if the model constructed on the computer does not comply the
requests, then we choose another norm. If in the model we use the quasi-triangular
fuzzy numbers introduced by M. Kovács in 1992, then the model will not have to
be reconstructed, only the new norm gets a new model.

Let p ∈ [1,+∞] and g : [0, 1] → [0,∞] be a continuous, strictly decreasing
function with the boundary properties g (1) = 0 and lim

t→0
g (t) = g0 6∞. The quasi-

triangular fuzzy number we define in the fuzzy triangular space (F (R) , Tgp, N),
where

Tgp (x, y) = g[−1]
(
(gp (x) + gp (y))

1
p

)

is an Archimedean triangular norm generated by g and

N (x) =

{
1− x if g0 = +∞,

g−1 (g0 − g (x)) if g0 ∈ R.

is a negation operation, where

g[−1] (t) =

{
g−1 (t) if 0 6 t < g0,

0 if t > g0.

Definition 2.2. The set of quasi-triangular fuzzy numbers is

Ng =
{
Ā ∈ F (R) : there is a ∈ R, d > 0 such that

µĀ (x) = g[−1] (|x− a| /d) for all x ∈ R
}⋃

{
Ā ∈ F (R) : there is a ∈ R such that µĀ (x) = χ{a} (x) for all x ∈ R

}
,
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Figure 1: The quasi-triangular fuzzy number 〈3, 1〉

where χA is characteristic function of the set A. The elements of Ng will be called
quasi-triangular fuzzy numbers generated by g with center λ and spread d and we
will denote them with 〈λ, d〉.
Remark 2.3. If 〈λ, d〉 ∈ Ng and d > 0, then α-levels of 〈λ, d〉 is [〈λ, d〉]α =
[λ− dg (α) , λ+ dg (α)] and if d = 0, then [〈λ, d〉]α = {λ}, for all α ∈ [0, 1].

Definition 2.4. The T -Cartesian product ’s membership function of fuzzy sets
Āi ∈ F (Xi) , i = 1, . . . , n is defined as

µĀ (x1, x2, . . . , xn) =

T
(
µĀ1

(x1) , T
(
µĀ2

(x2) , T
(
. . . T

(
µĀn−1

(xn−1) , µĀn
(xn)

)
. . .

)))
,

for all (x1, x2, . . . , xn) ∈ X1 ×X2 × · · · ×Xn.

Example 2.5. Let g : [0, 1]→ [0,∞] be a function given by g (t) = 1 − t2 for all
t ∈ [0, 1] . Then the membership functions of quasi-triangular fuzzy numbers 〈a, d〉
is

µ (t) =





0 if t 6 a− d,√
1− a

d + t
d if a− d < t 6 a,√

1 + a
d − t

d if a < t 6 a+ d,

0 if t > a+ d

if d > 0.

The graph of quasi-triangular fuzzy number 〈3, 1〉 we can see on the Figure 1.

3. The diffusion of information

Let A be a sample of data in a given normed space X that comes from the
observation of some phenomenon. Let us denote a real relation with R. The
method that defines the R from sample A is called an operator. We denote the
set of all operators by Γ. Examples for operators: data series analysis, correlation
examination, hypothesis examination, the method of artificial neural networks, etc.

Definition 3.1. Let R be a relation in X . The sample A is a correct-data set to R
on universe U ⊆ X if there exists an operator γ such that we can obtain a relation
R(γ,A) equal to the restriction of R at U .
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Definition 3.2. Let R be a relation in X . The sample A is an incomplete-data
set to R on universe U ⊆ X if there does not exist an operator such that we can
obtain the restriction of R at U from A.

Definition 3.3. Let A = {xk : k = 1, 2, . . . , n} be a deterministic sample in uni-
verse U ⊆ X . The characteristic function of A is χA : A × U → {0, 1}, where

χA (xk,u) =

{
1 if u = xk,
0 if u 6= xk.

Definition 3.4. We consider a division Uj , j = 1, . . . ,m of universe U , i.e.

U =

m⋃

j=1

Uj , Uj ∩ Uk = ∅ if j 6= k.

The characteristic function of the division Uj is χm : A× U → {0, 1}, where

χm (xk,u) =

{
1 if xk ∈ Uj,
0 if xk /∈ Uj,

for all u ∈Uj .

The characteristic function is replaceable with membership function µ : A×U →
[0, 1]. In this case, the value µ(xk, u) shows how far the sample’s element xk is in
set Uj . For example, if X = R then the membership function of quasi-triangular
fuzzy number

µ(xk, u) = g[−1]

( |xk − u|
d

)

is a membership function of division to interval with centre xk and length 2d.
Therefore, µ(:, uj) is the membership function of Uj , for all uj ∈ Uj.

Definition 3.5. The family of membership functions µ(:, uj) : U → [0, 1], j =
1, . . . ,m is a fuzzy division of the U .

Definition 3.6. Let A be a sample of universe U . The function µ : A×U → [0, 1]
is a scattering function of the information, if i) µ(xk,xk) = 1, for all xk ∈
A ∩ U ; ii) for all xk ∈ A and for all u,v ∈ U , if ‖xk − u‖ 6 ‖xk − v‖, then
µ(xk,u) > µ(xk,v).

For all elements xk of the sample A the scattering function defines a fuzzy
number with centre in xk and membership function µ(xk, :) : U → [0, 1]. The
simplest scattering function is µt = χ. This function will be called trivial scattering
function of the information.

The scattering function of the information shows how far the data u can be the
correct-data of a phenomenon. For example, if u is in sample A then u is totally
correct-data of the phenomenon. Using the scattering function µ the sample A
can be expand with new elements and so we get a sample notated by A(µ,U)
with elements (xk,uj , µ(xk,uj)) ∈ A × U × [0, 1], where uj ∈ U, j = 1, . . . , p and
k = 1, . . . , n.
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If X = Rn, then it possible to define scattering function with help of quasi-
triangular fuzzy numbers. We fuzzified all elements of sample A, i.e. for all compo-
nents xki of vector xk ∈ A we assign a quasi-triangular fuzzy number 〈xki, λ (xki)〉
with spread λ (xki) > 0, i = 1, . . . , n.

As follows from the definition of Tgp-Cartesian product the scattering function
of information is given by
µ ((xk1, xk2, . . . , xkn) , (u1, u2, . . . , un))

=





g−1

([(
|xk1−u1|
λ(xk1)

)p

+ · · ·+
(

|xkn−un|
λ(xk1)

)p] 1
p

)
if |xki − ui| 6 λ (xki) g0

for all i = 1, . . . , n,

0 otherwise.

Let R be a relation on universe U ⊂ X and γ be an operator. If we are using
the sample A = {xk : k = 1, 2, . . . , n} to estimate the relation R, then our method
is a nondiffusion estimator, and if we are using the sample A(µ,U), where µ is a
nontrivial information scattering function, then our method is a diffusion estimator.
The trivial information scattering function yields a nondiffusion estimator.

Theorem 3.7 (Principle of information diffusion). Let R be a relation on universe
U ⊂ X = Rn, where U is a convex set. Let A = {xk : k = 1, 2, . . . , n} be a
deterministic sample for estimation of R on universe U . We assume that γ is the
best operator of relation R for some measurement of the error. The sample A is
incomplete-data set of the relation R on U if and only if there exists a nontrivial
information scattering function µ such that if we apply the operator γ to fuzzified
sample A(µ,U), then we get a better estimation of R.

The proof of this theorem see in Z. Makó (2006) and C. F. Huang (2006).

4. The approximation property of artificial neural
network

The neural network can be understood as a mapping f : Rn → Rm, defined by
y = f(x) = g(Wx), where x is the input vector, y is the output vector, W is the
weight matrix and g is the activation function. The mapping f can be decomposed
into a chaining of mappings; the result is a multi-layer network Rn → Rp → Rq →
. . .→ Rm. The algorithm for computing W is often called the training algorithm.
The most popular neural network are the multi-layer back-propagation networks
whose training algorithm is the well-known gradient descendent method. Such
networks are called back-propagation (BP) networks.

An artificial neural network is a learning machine whose function depends on
the training examples. So, the machine does not recognize the real relation but
it determines a numerical relation among the state parameters. According to the
principle of information diffusion we can increase the certainty of the determined
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Figure 2: The banded approximation of the function f

relation if we multiply the number of the training examples with the help of an
appropriate information scattering function or if we apply a banded approach.
Neural networks trained in this manner are called diffusion-neural-networks ( C.
F. Huang and C. Moraga, 2004).

A number of authors have discussed the universal approximation property of
BP networks. For example, in 1989 K. Hornik et al. proved that the multi-layer
networks can approximate the continuous function to any degree of accuracy, i.e.
multi-layer networks have the universal approximation property. After that, in 1995
J. Wray and G. G. R. Green showed that the universal approximation property does
not hold in practice for networks implemented on computers.

4.1. Banded approximation

Let f : [a, b] → R be a given continuous function and A = {((xk, f(xk)) ∈
[a, b]× R : k = 1, 2, . . . , n} be a given sample. We diffuse the information derived
from this sample with the generator function g : [0, 1] → [0,∞], where g(1) = 0
and g0 = limt→0 g (t) 6 +∞. Thus, we obtain the fuzzified

Ā = {(〈xk, αk〉, 〈f (xk) , βk〉) : k = 1, 2, . . . , n} ,
sample, where αk, βk > 0 are the spread of quasi-triangular fuzzy numbers 〈xk, αk〉
and 〈f (xk) , βk〉. Above derivative sample can be used to train a conventional BP-
network with two input values xk and αk, and two output values o1(xk, αk) and
o2(xk, αk). After the training we get a weight system where

H =

n∑

k=1

[
(f (xk)− o1(xk, αk))

2
+ (βk − o2(xk, αk))

2
]

the sum of square errors is less than a given number δ > 0. The trained network
for any input values x and 0 return the output values y and β. Using the generator
function g, we can construct a band [y− g(γ)β, y+ g(γ)β] around to function f for
any level value γ ∈ [0, 1]. The approximation has precision ε on the level γ, if the
distance between f and γ-level set [y − g(γ)β, y + g(γ)β] is less than ε.

For illustration of this method, we consider the function f : [0, 1]→ R, f(x) =
x− x2. Our task is to train the function with the sample

A = {(0, 0), (0.25, 0.1875), (0.5, 0.25), (0.75, 0.1875), (1, 0)}.
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Figure 3: The DNN network for prognosis of the exchange rates

The fuzzified sample is
Ā = {(〈0, α〉, 〈0, α〉), (〈0.25, α〉, 〈0.1875, α〉),
(〈0.5, α〉, 〈0.25, α〉), (〈0.75, α〉, 〈0.1875, α〉),
(〈1, α〉, 〈0, α〉)},

where α = 0.0001.

4.2. Prognosis of the exchange rates
We study the variation of the exchange rates of currency RON as a function of

6 currencies (CHF, GBP, HUF, EUR, JPY, USD). The back propagation difusion-
neural-network is used for the analysis (see Figure 3). The input of network is the
vector (I1, I2, I3, I4, I5, α) =

(CHF/EUR,GBP/EUR,HUF/EUR, 100JPY/EUR,USD/EUR,α)

and the otput is (P, β) = (RON/EUR, β). The activation function of all neurons
is

tansig(x) =
1− e−2x

1 + e−2x
.

We can use the derivative sample to train a conventional BP-network which is given
by Figure 3. The I1, I2, I3, I4, I5 and P are the exchange rates of currencies α and
β are the accuracy of forecast. The Table 1 contains few elements of the derivative
sample.

I1 I1 I1 I1 I1 α P β
0.6477 1.4109 0.0040 0.7190 0.7384 0.02 0.2543 0.02
0.6464 1.4155 0.0040 0.7209 0.7473 0.02 0.2571 0.02
0.6435 1.4160 0.0040 0.7198 0.7556 0.02 0.2585 0.02

Table 1: The derivative sample

In this model the generator function of quasi-triangular fuzzy nubers is g (t) =
1−t2. The accuracy ε is ±0.02. The value of γ is 0.9. The prognosis of the exchange
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Figure 4: The banded approximation of the exchange rates

rates has precision ±0.02 on the level 0.9, if the distance between the γ-level set of
prognosis and exchange rates P is less than or equal to 0.02.

We can see on the figure 4 that the prediction band [o1−g(γ)o2, o1+g(γ)o2] and
the band [P − ε, P + ε] has common point all the time. In conclusion the prognosis
has precision ±0.02 on the level 0.9.
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