
Proceedings of the 7 th International Conference on Applied Informatics
Eger, Hungary, January 28–31, 2007. Vol. 2. pp. 55–62.

Teaching Java programming based on the
pool of open source case studies∗

Ladislav Samuelis, Csaba Szabó, Zdeněk Havlice

Department of Computers and Informatics
Technical University of Košice

e-mail: {Ladislav.Samuelis,Csaba.Szabo,Zdenek.Havlice}@tuke.sk

Abstract

Teaching software engineering through open source case studies is not a
new approach. In spite of this fact only recently are offered courses based on
this approach. This involves reuse, understanding, modification and exten-
sion of existing software. These skills are highly demanded by the industry.
The paper deals with the pedagogical and technical background of a specific
implementation for the collection, assessment and archiving of the students’s
projects. The implemented system (3-layer Java based architecture) collects
and automatically applies OO metrics in order to measure the characteristic
features of the assignments. Results are used for the detection of the pla-
giarisms and selection of outstanding works. The paper statistically presents
the suitability of this approach in a real setting. We conclude that the avail-
ability of the online course, licenced from the Sun Mirosystems, Inc., blended
with the access to the portal of open source case studies, is an effective way
of learning Java.

Keywords: blended learning, open source for teaching software engineering
principles, object-oriented metrics

MSC: 68N30

1. Introduction

Teaching software engineering subjects through open source-code case studies
is not a novel approach in general. In spite of this fact only recently are offered so-
phisticated software engineering courses based on this approach [2]. This approach
is important because industry demands mostly modifications of the existing pro-
grams and programs are less frequently built from scratch. Students, who study
in this way, could gain complex skills in cognitive processes such as understanding,

∗This work was supported by the grant VEGA No. 1/2176/05.

55

56 L. Samuelis, Cs. Szabó, Z. Havlice

modification and reuse of the existing software. As much as 45% of resources are
devoted to testing and simulation [1].

This paper is specifically devoted to the measurement of the object-oriented
assignments. One way of teaching Java is through small chunks of code, which
serve for explaining Java technologies. The other way, which we followed, is to as-
sign independent projects, which cover a scope of lessons the course provides. This
variant offers students wider area for experimentation with the gained knowledge.
If we choose this possibility, it is very good to have a system that guides students
through learning and then stores students’ projects into a database for the evalu-
ation and later reuse. That is why we implemented a system in order to support
these needs. The elaboration of robust courses based on the incremental analysis,
the implementation of adequately selected set of open source-code case studies, and
the management of students’ deliverables for later reuse, require special attention
and effort.

We show that a well-chosen case study facilitates the introduction of fundamen-
tal concepts in a coherent sequence. The basic idea is to guide students through
explanations, models and pieces of code on the way to understand a complex code
and application, so that they can apply the acquired knowledge in understanding
further codes of similar complexity. The results fall broadly into two categories,
they are technical and pedagogical in nature:

1. technical results

• Application that guides students through case studies by stepwise re-
finement. In other words, the developed application provides students
and tutors with basic functionalities of a classical Learning Manage-
ment System (LMS). These functionalities are e.g. loging and tracking
of the student’s progress. The “pilot” case study, that introduces stu-
dents into Java, is devoted to the simulation of the Automatic Teller
Machine (ATM).

• Application for archivng purposes and later measurement and evalua-
tion of selected students’ projects. After finishing the course (1 semester
long) we collected the projects and measured the object-oriented char-
acteristics of the projects. The application automatically measures the
submitted projects and evaluates the obtained results.

2. pedagogical results

• We were especially interested in the selection of the outstanding projects,
which should serve for learning purposes in the following academic years.
The evaluated data helped during the marking process of the submitted
projects and at the detection of the plagiarism. We show some snaps of
the student’s and the tutor’s interface during the comunication with the
system and the evaluated data.

Teaching Java programming based on the pool of open source case studies 57

The organization of the rest of the paper is as follows: in Section 2 we present
the experiment and results we obtained. Section 3 is devoted to the analysis of the
applied metrics and the final Section 4 contains summary and outlines the direction
for future extensions of the application.

2. Brief description of the e-learning system

The system is iplemented in Java using the Tomcat [7] technology and the SQL
server. It provides Java case studies, which are divided into 13 lessons. The num-
ber of lessons is in accordance to the number of weeks in the semester. Lessons are
weaved with small quizzes and students can verify their knowledge interactively.
After completing all lessons, students’ efforts culminate in creating their own appli-
cation. These applications are uploaded into the system at the end of the course.
The system offers tools for the assessment of the submitted assignments. From the
users’ point of view, it provides GUI (Graphical User Interface) for 2 groups of
users, namely for students and for tutors.

2.1. Student’s interface of the LMS

At the beginning of the course students have to fill in a registration form for
administrative purposes. After submitting this form they have to wait for the con-
firmation of the registration, which is provided by tutor. If student is successfully
registered, s/he can login into the system. After login the actual announcements
are at disposal. These announcements are added and updated by tutor. The lessons
are available after the registration. Figure 1 (some figures’ data are in slovak) shows
a piece of the text, which analysis a specific class of the ATM simulation program.

These lessons support students with learning materials for object-oriented pro-
gramming in Java step by step. The theoretical background of the case study is
completed with practical examples, so students could obtain a complex knowledge
of the problem. After successful completing all lessons, students should be able to
create their own ATM simulation program, which was described in the practical
part in the case studies. The ultimate goal of this course is that students have to
make their own ATM simulation program.

We have automated the submission process in order to archive them and to
evaluate the object-oriented features of their submitted projects. Students submit
the assignments as a JAR file with specific structure due to the automatic assess-
ment of the projects. These specific instructions are available for students in detail
throughout the course.

2.2. Tutor’s interface of the LMS

As we mentioned before, tutor takes care about registering students into the
system, updating and creating announcements. The most important issue for a

58 L. Samuelis, Cs. Szabó, Z. Havlice

Figure 1: Student’s interface of the LMS

tutor is to have an overview about the submitted projects in order to evaluate
them for similarities and selection of the outstanding works. LMS offers tools for
grouping similar projects. This is one way how the tutor can check the originality
of the projects. Every submitted project is evaluated by measuring several object-
oriented features. Tutor then selects the outstanding projects in order to put them
into the pool of outstanding works for the reuse in the next academic year.

2.3. Experiences with the e-learning system

Registered students already passed successfully programming in C language
and basic of object-oriented programming. For the first time we tested the system
with 104 registered students in academic year 2006/2007 in the summer semester
of the 3rd term. During that period students had to understand and implement
the project using Java. Full-time students created five study groups for consultacy
purposes and there was one study group attended by external students.

As the system operated for the first time this year, the possibility that there
will be problems with submitting assignments was very high. That is why the
tutor and students from higher terms assisted continuously during the submission
process.

As mentioned before, case study contains a tutorial how to create ATM simu-
lation program.

Teaching Java programming based on the pool of open source case studies 59

3. The object-oriented metrics applied for measur-
ing the assignments

The software development process is no doubt a complicated one. The end
product follows a chain of analysis, design, development and testing process. At
each stage, it is important to follow a well-defined methodology to ensure a quality
end product. For large scale projects, each stage in the whole process is a challenge.
In this context, the software design and coding metrics play an important role in
ensuring the desired quality.

3.1. The applied Object Oriented Metrics
After uploading the assignment into the system it is checked against the struc-

ture of the JAR file and then executed on a local PC. After this step the application
is checked and evaluated against the predefined metrics. We used the open source
package JDepend [5] for this purpose. It traverses Java class file directories and
generates design quality metrics for each Java package. This approach is automatic
and provides interesting data for tutors. Tutor does the final assessment in any
case. On the basis of the JDepend package, tutor has at disposal the following
information about the quality of the source code:

3.1.1. Number of Classes and Interfaces

The number of actual and abstract classes (and interfaces) in the package is an
indicator of the extensibility of the package.

3.1.2. Coupling

Coupling is a measure of interdependence of components. High coupling implies
strong interconnections between program units, while loose coupling implies inde-
pendence. Object-oriented designs reflect the real world as independent objects,
which leads to loose coupling, if designed well. Once again, inheritance causes tight
coupling among classes. Because inheritance and polymorphism are heavily used in
object-oriented paradigm, a study of metrics for object-oriented software becomes
an important research project [9]. JDepend offers these kind of couplings:

• Afferent Couplings (Ca) - The number of other packages that depend upon
classes within the package is an indicator of the package’s responsibility.

• Efferent Couplings (Ce) - The number of other packages that the classes
in the package depend upon is an indicator of the package’s independence.

3.1.3. Abstractness - (A)

You measure the abstractness of a package by calculating the ratio of the number
of abstract classes (and interfaces) in the package to the total number of classes in

60 L. Samuelis, Cs. Szabó, Z. Havlice

the package. Abstractness can be measured using the following formula: A=Na/Nc

• A - represents a package’s abstractness.

• Na - represents the number of abstract classes and interfaces in a package.

• Nc - represents the number of concrete classes in a package.

An abstractness value of zero indicates a completely concrete package, whereas
a value of one indicates a completely abstract package.

3.2. Why to measure student assignments?

Analysis of object-oriented programs involves much more features and we con-
strain the analysis only to the above-mentioned points. We observe from the sub-
mitted assignments that most of students created just one package and put all
classes into one package. This behavior is typical for beginners. These results show
that tutor has to focus on the explanation of importance of the packages. Packages
are more scalable, flexible, it is easier to read complex code through packages. Qual-
ity metric results are very important because tutor can reveal students’ concepts,
which they had to learn from theory and practice. Results of these measurements
provide information how to improve the case studies and the selection of outstand-
ing projects. We stress that the ultimate goal of the evaluation is the selection of
outstanding applications, which may serve for the learning purposes for students
in the following academic years. Tutor is the final judge of the running applica-
tions, evaluates the complexity, reviews and analyzes the documentation or checks
the similarities between the projects (plagiarism). At the moment, the metrics we
provide is used to make the tutor’s evaluative process easier and it is not useful for
students at all. Our plan is to offer the advantages of software measurement for
all users and it should be another teaching aid for students. This could improve
assignments design quality. Pure numbers do not give any sense for students, hence
it follows the brief explanation of metrics meaning has to be also provided. Our aim
is to extend collection of metrics measured by system namely Chidamber and Ke-
merer metric (henceforth, CK). Use of CK set of metrics and other complementary
measures are gradually growing in industry. The object-oriented metrics proposed
by Chidamber and Kemerer can be summarized as follows [8]:

• Weighted Methods per Class (WMC) - this is weighted sum of all the
methods defined in a class.

• Coupling Between Object Classes (CBO) - it is a count of the number
of other classes to which a given class is coupled and, hence, denotes the
dependency of one class on other classes in the design.

• Depth of the Inheritance Tree (DIT) - it is a length of longest path from
a given class to the root class in the inheritance hierarchy.

Teaching Java programming based on the pool of open source case studies 61

• Number of Children (NOC) - this is count of the number of immediate
child classes that have inherited from a given class.

• Response for a Class (RFC) - this is count of the methods that can
be potentially invoked in response to a message received by an object of a
particular class.

• Lack of Cohesion of Methods (LCOM) - a count of the number of
method-pairs whose similarity is zero minus the count of method pairs whose
similarity is not zero.

These metrics should offer reinforcement that your software design is robust.
While good metrics do not guarantee a quality design, good metrics do help bolster
confidence. When used judiciously, these software metrics can be a valuable aid in
assessing quality design.

4. Conclusions

To sum up, students had at disposal within the course 4 different open-source
case studies describing an ATM simulation program. One of them was analyzed
in detail. For the successful completion of the course every student had to create
his/her own ATM simulation program. After finishing the course, we have got
approximately further 8 outstanding projects available for learning in the next
academic year.

More than 89% of students successfully submitted their assignments and more
than 88% from these students submitted their projects before deadline. The most
common problem during the submission process was the incompability of the JAR
files. JAR files created in NetBeans [3] or Eclipse IDEs [4] were not accepted by the
experimental system. This is the main reason why only about 46% of submitted
assignments were accepted on the first attempt. This obstacle has to be resolved in
the next version of the application. What concerns the similarity of the submitted
works, we may conclude that approximately 50% of students tightly followed the
code offered by case studies.

The course was supported with the online access to the materials licensed from
the Sun Mirosystems, Inc. [6], Students had access both to the pool of open-code
case studies and to the Sun’s materials. In this way students obtained blending
learning.

The further planned extensions are:

• enhance statistic module of the LMS

• improving tutor’s user interface

• enhance the robustness in order to accept variants of JAR files

We conclude that the availability of the online course, licensed from the Sun
Mirosystems, blended with the access to the pool of open-source case studies, is an
effective way of teaching programming in Java.

62 L. Samuelis, Cs. Szabó, Z. Havlice

References

[1] Cartwright, M., Shepperd, M., IEEE Transactions on Software Engineering,
IEEE Computer Society Press, (2000), 786–796.

[2] Buchta, J., Petrenko, M., Poshyvanyk, D., Rajlich, V., Teaching Evolution
of Open- Source Projects in Software Engineering Courses, Proceedings of 22nd IEEE
International Conference on Software Maintenance (ICSM’06).

[3] http://www.netbeans.org (as of 21.3.2007).

[4] http://www.eclipse.org (as of 21.3.2007).

[5] http://clarkware.com/software/JDepend.html (as of 21.3.2007).

[6] https://learningconnection.sun.com (as of 21.3.2007).

[7] http://tomcat.apache.org/ (as of 21.3.2007).

[8] Subramanyam, R., Krishnan, M. S., Epirical Analysis of CK Metrics fo Object-
Oriented Design Complexity: Implications for Software Defects, IEEE Transactions
on Software Engineering, vol. 29, No.4, (April 2003).

[9] Liu, X., Object-Oriented Software Metrics, Department of Cornputer Science Uni-
versity of Manitoba Winnipeg, Manitoba, Canada (1999).

Ladislav Samuelis, Csaba Szabó, Zdeněk Havlice
Department of Computers and Informatics
Technical University of Košice
Letná 9
04200 Košice
Slovakia

