
Proceedings of the 7 th International Conference on Applied Informatics
Eger, Hungary, January 28–31, 2007. Vol. 2. pp. 377–384.

Generating decision tree from lattice for
classification

László Kovács

ME University of Miskolc, Department of Information Technology
e-mail: kovacs@iit.uni-miskolc.hu

Abstract

The Formal Concept Analysis is a powerful tool to create a generalization
lattice for a given context. Beside this main application, the concept lattice
can be used as a tool to generate all closed attribute sets and to measure the
relationships between the class lables and the attribute sets. In our approach,
the generated lattice will be used directly to perform the class assignment.
During the preparation phase, a decision tree will be generated from the
lattice.

1. Formal concept analysis basics

In a wide area of soft computing, the methods of formal concept analysis (FCA)
are increasingly used to discover the object clusters and the generalization relation-
ships inherent in the corresponding attribute values. Wille [14] proposed first to
consider the elements in a Galois lattice as concepts. The Galois lattice is based on
a binary relationship between the objects and attributes. The edges of the lattice
represent the generalization connection. The FCA is used nowdays as a power-
ful tool in a wide variety of soft computing areas among others for data analysis,
information retrieval, knowledge discovery, association rule discovery, software en-
gineering. In this section, a short recall of the basic notations of FCA theory will
be given [14].

The set of all o objects is denoted with O. The objects are assigned to sets of
attributes. The symbol a denotes an attribute and the A is the set of all attributes.

Definition 1.1. A context K is given with a K(OK , AK , IK) triplet, where OK ⊆
O, AK ⊆ A and IK ⊆ OK ×AK is the binary relationship between the objects and
attributes.

The K context is usually given with an object-attribute matrix where every
cell has a 1 or 0 value. For a given X ⊆ OK set, the context determines a set
of attributes common in each objects in X . In the reverse direction, a Y ⊆ AK

377



378 L. Kovács

relates to a set of objects owing each attributes in Y . These mappings are given in
the following functions.

Definition 1.2. The function h maps a set of objects to the corresponding set of
attributes:

hK : P (OK)→ P (AK) : hK(X) = {a|a ∈ AK , ∀o ∈ X : oIKa} .

The function g maps a set of attributes to the corresponding set of objects:

gK : P (AK)→ P (OK) : gK(X) = {o|o ∈ OK , ∀a ∈ X : oIKa} .

The P (X) symbol denotes here the powerset of X . The chaining of the h and g
functions denotes a closure as it means the maximal set of objects (or attributes)
having the common attributes (or objects).

Definition 1.3. The closure function:

cK : P (OK)→ P (OK) : cK(X) = gK(hK(X))

c′K : P (AK)→ P (AK) : c′K(X) = hK(gK(X)).

The unit elements of the closure operation, i.e. whereX = cK(X) orX = c′K(X)
are called closed subsets. The pair of closed object and attribute subsets is called
formal concept.

Definition 1.4. A formal concept is a couple (X,Y ) where X ∈ P (OK), Y ∈
P (AK), hK(X) = Y and gK(Y ) = X . The X is the extent and Y is the intent
part of the concept.

It follows from the definition that X = cK(X) and Y = c′K(Y ) are also met.
Taking the set of all concepts, an ordering relationship can be defined based on the
inclusion of extent parts.

Definition 1.5. The ordering (6K) of the concepts: (X1, Y1) 6K (X2, Y2) ⇔
X1 ⊆ X2.

The inclusion relationship between two extent parts implies an inverse ordering
relationship between the intent parts:

Y1 ⊇ Y2 ⇔ X1 ⊆ X2.

The set of concepts with the 6K partial ordering meets the definition of a complete
lattice.

Property 1.6. The set of concepts in a K(OK , AK , IK) context is a complete
lattice where the infima and suprema of any subset of concepts are also elements of
the lattice. The infima an suprema concepts are defined on the following way:

∧(Xi, Yi) = (∩Xi, c
′
K(∪Yi)

∨(Xi, Yi) = (cK(∪Xi),∩Yi).



Generating decision tree from lattice for classification 379

The generated concept lattice for a K(OK , OK , IK) context is usually presented
with a Hasse diagram where only the neighbouring concepts are connected with
each others. As an example, let us take following input values from the example
in [6]:

O = {o1, . . . , o5}
A = {a1, . . . , a9}

I =




1 0 1 0 0 1 0 1 0
1 0 1 0 0 0 1 0 1
1 0 0 1 0 0 1 0 1
0 1 1 0 0 1 0 1 0
0 1 0 0 1 0 1 0 0




There are twelve non-trivial concepts generated from this context. The correspond-
ing Hasse diagram is shown in Figure 1.

2. Classification with concept analysis

The main goal of the classification algorithms is the assignment of a class to the
objects based on the object’s attribute values. Usually, the different attributes have
different correlation with the class labels. The concept lattice can be used as a tool
to generate all closed attribute sets and to measure the relationships between the
class labels and the attribute sets. One of the first proposals to apply a concept
lattice for classification problems is [15]. In this model, one of the attributes is
marked as class label. A classification rule describes the dependeny of the class
labels from the logical formulas.

Definition 2.1. Taking the K(OK , AK , IK) context, a classification rule is given
in the form f ⇒ c where ac is a class attribute, c is class-label and f ∈ F ∗

K . The
goodness of a rule is measured with the confidencie and generality properties, where

conf(f ⇒ c) =
|m(f ∩ (ac = c)|)

|m(f)|

generality(f ⇒ c) =
|m(f))|
|OK |

.

The higher is the confidence value the more accurate is the classification rule.

Definition 2.2. A consistent classification rule is a classification rule with a con-
fidence value 1, i.e. |m(f ∩ c)| = |m(f)|.

The m(f) symbol denotes the set of objects meeting the f predicate. A conjuc-
tive concept (X, f) is called a consistent concept if it implies a unique class label
and the confidence value is equal to 1.

A most general consistent concept is a consistent concept where neither of the
super concepts is consistent.



380 L. Kovács

It can be shown that the set of most general consistent concepts is covering
all of the universe. Thus the set of most general consistent concepts is enough to
perform the classification process.

In a brute-force approach to generate this set, the lattice of all concepts is
built up first. Then, the sets of consistent concepts and the set of most general
consistent concepts are filtered out. The most ineffective part of the algorithm is
the first step, the generation the whole lattice. In [15], the PRISM algorithm is
proposed to generate the most general consistent concepts on a heursitic way. The
algorithm consists of the following steps:

1. Generating the set of consistent classification rules {φ} using the following
algorithm:

(a) Loop for every class labels c.

(b) Calculating the probability of (c|φ).
(c) Selection of rules with maximal probability values.

2. Generating a consistent definition pair for every rule {(gK(φ), φ)}

3. Constructing the set of conjuctive consistent concepts {(gK(φ), hK(gK(φ)))}

4. Eliminating the conjuctive consistent concepts that are not most general con-
cepts.

The experiments [15] show that the classificication based on concept lattice can
achieve a higher description accuracy than the widely used ID3 algorithm. The
main benefits of the lattice-based approach is the systematic processing of all pos-
sible closed groups of formulas to filter out the formulas with highest correlation
to a class label.

3. Converting lattice into decision tree

The generated lattice is used to perform a classification task. The goal is to
predict the class label from the attributes for any object w ∈W . In our approach,
the generated lattice will be used directly to perform the class assignment. During
the preparation phase, a decision tree will be generated from the lattice. The
classification process is based on the following considerations.

Let Λ denote the concept lattice generated from the given context on the usual
way. The lattice is extended with labels to perform the classification task. The
resulted extended lattice is denoted by Λ∗. From efficency reasons, a default class
label is also introduced for the concepts.

Definition 3.1. Given a Λ=({Ai, Bi} ,6) lattice the Λ∗ extended lattice is a tuple
({Ai, Bi} ,6, s, c, d) where s and c are the support and class labels of the concepts:

s : T → N+



Generating decision tree from lattice for classification 381

c : T → C.

The T symbol denotes the set of (Ai, Bi) concepts in Λ. The support value is equal
to the number of dominated concepts (using the 6 relation). The class value is
defined as the intersection of the nonempty class values on the set of descendants.
The d function denotes the default class value:

d : T → C.

The d value is defined as the nonempty class value with highest support within the
descendants.

In the classification, the concepts with unambiguous class label are the basic
information sources for the class assignment. These concepts are called consistent
concepts. The maximal consistent concepts are such consistent concept that have
no consistent dominator concepts. The maximal consistent concepts can be used
to determine the class label for a string pattern.

Definition 3.2. A c1 concept in Λ∗ is consistent if |c(c1)| = 1. The set of consis-
tent concepts in Λ∗ is denoted with Cc

Λ.
A c1 concept in Λ∗ is called maximal consistent concept if

c1 ∈ Cc
Λ,¬∃c2 ∈ Cc

Λ : c1 6 c2.

The class assignment algorithm is based on the following considerations:

Lemma 3.3. The following implication rules are met in the Λ∗ lattice:

• If there exists only one maximal consistent concept for a class value c and
the intent part of this concept is d, then:

d⇔ c

This means, that c occurs if and only if , the d occurs. In this case, the
corresponding decision tree may contain only one decision node for the class
c.

• For every consistent concepts for a class value c where the intent part is d,
the following implication holds:

d⇒ c

In this case, the decision tree will have a node for d having a leaf child node
with c.

The given implication rules can be used to imply the value of the class attribute
from the corresponding content attributes. The set of the derived implications is
organized into a decision tree. The decision tree structure is easy to undertstand
and it provides an algorithmic approach. In the proposed method, the decision
tree is generated from the concept lattice using the following rules.



382 L. Kovács

Definition 3.4. A concept lattice Λ can be converted into a decision tree ∆ for
determining the class attribute from the content attributes. The ∆ is a binary
rooted tree, where each node is assigned to a generalized word. A not leaf node
has two children edges labeled with the ’True’ and ’False’ logical values. On a
node with generalized word w+ a w′ word passes to the ’True’ egde if and only if
w′ 6 w+.

In the normal way of lattice transformation, the words outside of the training
pool can not be assigned to any class. In the proposed version of the decision tree
building algorithm, the leaves with unknown class value are eliminated. This leaf
will be assigned to the class value with the highest probability within the parents
domain. The domain a concept denotes the set of dominated concepts. In order
to measure the probability, a support value is assigned to every concept node. The
support value corresponds to the number of descendant objects. The default class
within the domain of a concept is the class of the child with highest support value.
Using this support value, not only the unknown class values are eliminated but
also a tree reduction can be performed. In the reduced tree, all of the child nodes
belonging to the most probably class labels are eliminated and only the exception
nodes are preserved. These modifications require a new tree building algorithm.

The conversion is performed with the following valid transformation steps.

transform a lattice
L : input lattice
D : output decision tree
lattice_to_tree () {

D.root = {}; /* empty word, it dominates all words */
t = L.top; /* the suprenum of all concepts, the 1 element */

process (t,D.root, L,D);

}

transform a concept
t : concept
p : parent node in D
L : lattice
D : decision tree
process (t,p, L,D) {

Ch = the set of children concepts of t;
order Ch by decreasing support order;
cd = the dominant class value for t;
eliminate the concepts with class cd from Ch;
foreach c in Ch



Generating decision tree from lattice for classification 383

d = the intent of c;
create a node in D with d (=n);
if this is the first child then

join n to the ’True’ edge of p;
else

join n to the ’False’ edge of p;
endif
if c is unmarked then

if c is a maximal consistent concept then
add a leaf with class value of c to the
’True’ edge of n;

else
process (c,L,D);

endif
p = n;

endif
endfor
add a leaf with class value cd to the ’False’
edge of last n;
set all children of c to be marked ;

}

In order to make the decision tree more efficient some additional generalization
elements were also introduced into the algorithm.

References

[1] Browing, M., Null Operator Constructions, Ph.D. thesis, MIT, (1987).

[2] Chomsky, N., Aspects of the Theory of Syntax, Cambridge, MIT Press, (1965).

[3] Chomsky, N., Formal properties of grammar, (1963).

[4] Ferre, S., Ridoux, O., A logical generalization of formal concept analysis, (2001).

[5] Gildea, D., Jurafsky, D., Automatic Induction of Finite State Transducer for
Simple Phonological Rules, Meeting of ACL, (1995).

[6] Godin, R., Missaoui, R., Alaoui, H., Incremental concept formation algorithms
based on Galois (concept) lattices, Computational Intelligence, (1995), 246–267.

[7] Harris, Z., Methods in Structural Linguistics, University of Chicago Press, (1951).

[8] Jurafsky, D., Martin, J. H., An introduction to speech recognition, computa-
tional linguistics and natural language processing, (2006).

[9] Krenn, B., Samuelsson C., The Linguistic’s Guide to Statistics, (1997).



384 L. Kovács

[10] Manning, C., Schütze, H., Foundations of Statistical Natural language Process-
ing, MIT Press, (1999).

[11] Shannon, C., Prediction and entropy of printed English, Bell System Technical
Journal, (1951).

[12] Valtchev, P., Missaoui, R., Building concept (Galois) lattices from parts: gen-
eralizing the incremental methods.

[13] Wallace, C., Seneca Morphology, International Journal of American Linguistic,
(1960).

[14] Wille, R., Restructuring Lattice Theory: an Approach Based on Hierarchies of
Concepts, Ordered Sets, Reidel, (1982).

[15] Zhao, Y., Yao, Y., Classification based on logical concept analysis, (2006).


