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Abstract

Students of the University of Debrecen majoring in informatics have been
participating in regional ACM international collegiate programming contests
since 1995. In this paper, we introduce the history and rules of ACM con-
tests. The problems of this programming contest cover several topics from
the area of mathematics and informatics. We deal with topics in which search
algorithms may be used during problem solving. We show search algorithms
which can be applied to solving problems presented in ACM contests of the
last few years. Such algorithms are different versions of backtracking al-
gorithm as well as breadth-first search and uniform-cost search. It is very
important to find the best algorithm for problem solving in order to have the
most efficient solution. We will see that even if using the same algorithm,
the performance of these methods are highly dependent on the state space
representation of the problem.
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1. About ACM contests

The 1st ACM contest was held at the Baylor University, Texas in 1970. Since
then this university has been incessantly the main organizer of ACM contests.
From 6099 teams selected from 1756 universities in 82 countries competing at 205
sites and hundreds more competing at preliminary contests worldwide, 88 teams
of students competed for bragging rights and prizes at The 31st Annual ACM
International Collegiate Programming Contest World Finals sponsored by IBM on
March 15, 2007, and hosted by ACM Japan Chapter and IBM Tokyo Research
Lab. (These data are based on [1].)

From Hungary four universities take part in the contest from year to year,
namely Budapest Univerity of Technology and Economics, Eötvös Loránd Uni-
veristy, University of Szeged and University of Debrecen. Unfortunately, there has
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never been a Hungarian team in the World Finals. From our region ususally Polish
teams (and sometimes Czech teams) advance to the finals.

1.1. Rules of the contest
The most important rules of an ACM contest are the following:

• The language of the contest is English.

• Each team consists of three contestants.

• Each team will be allowed to use one IBM PC-compatible computer.

• Contestants may bring resource materials such as books, manuals, notes and
program listings. Contestants may not bring any machine-readable versions
of software or data. Contestants may neither bring their own computers,
computer terminals and calculators nor any kind of communication devices
such as radio sets, cellular phones, pagers and PDAs.

• Usually 7–12 problems are posed.

• The contest is scheduled typically for 5 hours.

• There are size, runtime and memory limitations for the solutions.

• Teams are ranked according to the most problems solved. Teams who solve
the same number of problems are ranked by least total time. The total time
is the sum of the time consumed for each problem solved. The time consumed
for a solved problem is the time elapsed from the beginning of the contest to
the submittal of the accepted run plus 20 penalty minutes for every rejected
run for that problem regardless of submittal time. There is no time consumed
for a problem that is not solved.

1.2. Problem categories
The problems of an ACM contest can be classified into the following categories:

• combinatorics,

• number theory (e.g. prime numbers),

• arithmetic and algebra (e.g. modular arithmetic, big integers),

• computational geometry,

• backtracking,

• graph theory (traversal, single source shortest path, all-pairs shortest path,
minimum spanning tree, articulation point, flood fill, network flow, maximum
bipartite matching, etc.),
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• sorting,

• string processing (e.g. pattern matching),

• greedy algorithms,

• dynamic programming,

• divide and conquer algorithms,

• advanced data structures (e.g. Fibonacci heaps, sets, dictionaries).

2. Search algorithms

We deal with backtracking and graph search (breadth-first search and uniform-
cost search) algorithms in this paper because these algorithm families are very
commonly used during ACM contests.

The base version of backtracking may be used when the problem’s representa-
tion graph is a tree graph, the solutions are at the same level in this tree, and we
need all of the solutions. The advantage of this algorithm is its small memory need.
For example, the well-known Eight Queens’ Problem is such a problem. Another
example will be introduced in Section 2.1.

The base version of backtracking is inexpedient to solve poblems with an infinit
representation graph, or a graph which contains cycles. Though we may use path
length limitation or cycle checking in backtracking, but in these cases we can usually
find a more appropriate algorithm to solve the problem.

We may use backtracking also to find an optimal solution, namely with dynam-
ically decreasing path length limit. However, we should only use this technique if
we have an upper estimation of the cost of the optimal solution.

Two of the graph search algorithms are capable of finding the optimal solution:
breadth-first search and uniform-cost search (Dijkstra) algorithms. We use BFS
in case of equal cost operators, and uniform-cost search in case of different cost
operators.

The depth-first search algorithm and heuristic search algorithms are rarely used
at ACM contests. These algorithms are inappropriate to find an optimal solution,
moreover during the contest we cannot know whether our heuristics is better than
that of the judges, and we have a good chance that it is not.

In the following sections we show five problems with the most suitable algorithm.
In case of some problems we show different state space representations, and compare
the efficiency of the algorithms mentioned above using these representations.

2.1. Half plus half equals one

There are given ten boxes indicating the digits of two fractions as shown in
Figure 1. Fill in the boxes with different digits from 0 to 9 so that the value
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Figure 1: Half plus half equals one

of both fractions is 1
2 and no number begins with the 0 digit. Give all possible

solutions.
This is an example of problems which can be solved most conveniently using

the base version of backtracking. The representation graph is a tree, the goal states
are in the same level in the tree, and we are searching for all of the solutions.

In Table 1 you can see all the 16 solutions of the problem.

13/26 = 485/970 38/76 = 145/290

15/30 = 486/972 38/76 = 451/902

16/32 = 485/970 45/90 = 138/276

27/54 = 309/618 45/90 = 186/372

29/58 = 307/618 45/90 = 381/762

31/62 = 485/970 46/92 = 185/370

35/70 = 148/296 48/96 = 135/270

35/70 = 481/962 48/96 = 351/702

Table 1: Solutions

2.2. The warehouse

We have a square-shaped warehouse with a grid layout as shown in Figure 2.
The circle denotes Secret Agent Θ–7, letter E denotes the exit, which is a hole in
the ceiling, and the numbered fields denote boxes of certain heights. The floor is
filled with deadly acid. Θ–7 can do only two things: he can move to the top of an
adjacent box and he can topple the box he is standing on. In Figure 2 you can see
an example of the latter move.

The goal is to give the minimum number of steps Θ–7 requires to reach the exit
without stepping onto the floor.

We can use the uniform-cost search algorithm to solve this problem because
now we are searching for the lowest cost solution.
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Figure 2: The warehouse

2.3. Ah Ce Emm

This problem is based on a Chinese gamble. Note that the title of the problem
refers to the name of the contest: ACM.

Given a random amount of pebbles, you have to lose all these pebbles applying
the following options in any order:

• The fire: if you have at least 11 pebbles, then you can throw away exactly 11
pebbles by paying x1.

• The dragon: if the number of your pebbles is divisible by 3, then you can
throw away exactly one third of your pebbles by paying 1 for each pebble
thrown away.

• The eagle: you can ask for exactly 7 new pebbles by paying x2.

• The courage: you can double the number of your pebbles and get one addi-
tional pebble by paying 1 for each new pebble you get.

You are not allowed to have more pebbles than initially. What is the minimum
cost of losing all the pebbles?

This is also a typical problem which can be solved using the Dijkstra algorithm.
We cannot give the answer at once because x1 and x2 are variables, not constants.

2.4. The four knights

Place two white and two black knights on a chessboard of 3× 3 as you can see
in Figure 3. Exchange the white knights with the black knights using legal knight
moves, and give one sequence of moves corresponding to the knight swapping.

We present three different state space representations of this problem, and com-
pare the backtracking and the BFS algorithms using these representations.

In the first representation we distinguish all of the four knights as shown in
Figure 4. There is one initial state and there are four goal states. The parameters
of Move(knight, row, column) operator represent the knight that moves and the
destination square. This way we have 32 operators, but at most 8 of them can be
applied in a particular state.
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Figure 3: The four knights

Figure 4: First representation

We hope that our algorithm will be faster if we do not distinguish the knights
with the same color. This way we have only one goal state and 16 Move(x, y, u, v)
operators, the parameters of which represent the source and destination squares.

Figure 5: Second representation

Note that if the knights move in a certain (clockwise or counter-clockwise)
direction, we can map the board to a vector as shown in Figure 6. As the middle
square is never reached, only eight squares have to be mapped. In this vector
the adjacent squares are exactly a knight move’s distance from each other on the
original board. The only parameter of the Move(position) operator represents the
index in the vector from where a knight will move. This knight will move one
square right in the vector, which means that the knight will move a knight move’s
distance on the original table in the given (clockwise or counter-clockwise) direction.
This representation is much better because the precondition and the effect of the
operator are much easier to implement.

In Table 2 we compare the three representations and two algorithms. The length
of a solution is the length of the solution found first. The search time is the time
required to find all solutions.
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Figure 6: Third representation

Backtracking Breadth-first search
Number
of states

Number of
operators Length of

solution
Search
time

Length of
solution

Search
time

1. 280 32 108 21 ms 16 51 ms

2. 280 16 n/a n/a 16 45 ms

3. 117 8 16 1 ms 16 14 ms

Table 2: Searching of solutions and results

As we did not give the order in which these algorithms should choose the op-
erators, they chose them in a random order. Therefore, backtracking did not stop
using the second representation because the knights moved away from their target
squares.

The third representation has fewer states because in that case if a knight reaches
its target square, we do not let it move any more. Every knight has to make only
four moves, so more than half of the original states can be eliminated.

We got the number of states by running breadth-first search for all solutions to
traverse the whole graph.

2.5. Number ring

We have nine empty circles which we have to fill in with different numbers from
1 to 9 so that the sum of any two neighboring numbers must not be divisible by any
of 3, 5 or 7. In the right hand side of Figure 7 you can see one of the two solutions.
As we are looking for all solutions, backtracking is the preferred algorithm.

In the first state representation we apply a little trick: we use 10 positions to
store the 9 numbers, where the value of the last position is the same as that of
the first position. The set of goal states is given by a condition as opposed to the
previous problem. The first idea is that we write down all the numbers, and then
swap any two of them. This way we get 36 operators (which is the sum of the first
eight natural numbers). This is not really a good representation, we just review it
to later see how many states we have altogether.

We can improve the previous representation if we don not touch the numbers
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Figure 7: Number ring

at the beginning of the ring, so we can only swap the numbers behind the last
“good” position (where the numbers satisfy the goal). This way we get our second
representation.

We can further improve this representation if we allow swapping only at the
first “bad” position and do not allow swapping ahead of it and behind it. This is
the third representation.

Another improvement maybe applied to the previous representation if we place
such a number into the first “bad” position that satisfies the goal. This is a quite
good representation, which is similar to human’s thinking during solving a jigsaw
puzzle.

Finally, in the fifth representation we use a totally different technique where we
use 9 positions for the 9 numbers, and do not fill in all the circles initially. The
value of position #1 is fixed (1) the other values are all different from this (initially
0). We store the first empty position, i.e. the position with a value of 0. We place
only such a number into the first empty circle which satisfies the goal condition.
This gives us a fairly strong precondition, but we have only 8 operators, not 36.
This is like solving a crossword puzzle.

Backtracking Breadth-first search
Number
of states

Number of
operators Length of

solution
Search
time

Length of
solution Search time

1. 362880 36 n/a n/a 4 n/a

2. 40320 36 28908 39292 ms 4 6032162 ms

3. 9408 36 n/a n/a 4 71914 ms

4. 52 36 4 10 ms 4 26 ms

5. 117 8 8 6 ms 8 11 ms

Table 3: Searching of solutions and results
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In Table 3 we compare backtracking and BFS algorithms using these represen-
tations. Now you can see that the first three representations are not really good
for our need. There is a big difference between these representations. The search
time of the backtracking algorithm using the second representation is the time of
finding the first solution, not all.

3. Conclusion

As you can see from the examples, the following are all very important when
solving contest problems:

• thorough knowledge of the problem;

• the knowledge of the applicable problem solving techniques;

• the knowledge of a programming language and/or tool.

All of these knowledges fit in the Computer Science curriculum in such courses as
Data Structures and Algorithms, Programming Languages or Artificial Intelligence.
We at the University of Debrecen endeavor to form the structure of courses so that
we can inspire students to precisely analyze the problems.
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