
Proceedings of the 7 th International Conference on Applied Informatics
Eger, Hungary, January 28–31, 2007. Vol. 2. pp. 359–366.

Identification of dynamic systems by
hinging hyperplane models

Tamas Kenesei, Balazs Feil, Janos Abonyi

University of Pannonia
e-mail: abonyij@fmt.uni-pannon.hu

Abstract

This article deals with the identification of nonlinear dynamic systems by
hinging hyperplane models, which are represented by tree structured piece-
wise linear models.

This type of non-linear black-box models is relatively new, and its iden-
tification and application in the modeling of dynamic systems are not thor-
oughly examined and discussed so far. They can be an alternative to artificial
neural nets but there is a clear need for an effective identification method,
because the original identication algorithm given by Breimann suffers from
convergency and range problems.

This paper presents a new identification technique based on a fuzzy clus-
tering technique called Fuzzy c-Regression Clustering. This clustering tech-
nique applies linear models as prototypes and the model parameters and
fuzzy membership degrees are identified simultaneously. To use this cluster-
ing procedure for the identification of hinging hyperplanes, there is a need to
handle restrictions about the relative location of the hyperplanes: they should
intersect each other in the operating regime covered by the data points.

After the theoretical survey the paper gives detailed technical analysis of
the proposed technique with the help of the identification of nonlinear process
systems.

Keywords: Hinging hyperplanes, fuzzy c-regression clustering, piecewise lin-
ear models, dynamic models, regression tree

1. Introduction

A lot of nonlinear regression techniques have been worked out so far (splines,
artificial neural networks etc.). This article proposes a method for piecewise linear
model identification applying hinging hyperplanes as linear submodels. Hinging
hyperplane model is proposed by Breiman [3] and identification of this type of
non-linear models is several times reported in the literature, because the original
algorithm developed by Bremain suffers from convergency and range problems [8,
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7]. Methods like the penalty of hinging angle were proposed to improve Breiman’s
algorithm [6], or Gauss-Newton algorithm can be used to obtain the final non-linear
model [7]. The main goal of this paper is to present a new method for hinging
hyperplane model identification with Fuzzy c-Regression Models. This approach
yields simultaneous estimation of the parameters of c regression models, together
with fuzzy partitioning of the data and as this paper presents with appropriate
constrains FCRM can be used for hinge identification if c = 2.

In the application example the proposed hinge function based model will be
used for dynamic system modeling. The Non-linear AutoRegressive with eXoge-
nous input (NARX) model is frequently used with many non-linear identification
methods, such as neural networks and fuzzy models (see in [1]). This will be used
also in this paper to approximate the behavior of a water heater. This paper is
organized as follows. Section 2 discusses hinge function approximation, and how
the constrains can be incorporated into the FCRM identification approach. After
that the resulted tree structured piecewise linear model is described. In Section 3.1
an application example is presented, and Section 4 concludes the paper.

2. Non-linear regression with Hinge functions and
Fuzzy c-regression clustering

This section gives a brief description about what the hinging hyperplane ap-
proach means on the basis of [6], followed by the introduction of FCRM clustering,
and describing how the constrains can be incorporated into the clustering process.

2.1. Function approximation with Hinge functions

Suppose two hyperplanes are given by: yk = xT
k θ

+, yk = xT
k θ

−, where xk =
[xk,0, xk,1, xk,2, . . . , xk,n] (xk,0 ≡ 1) is the kth regressor vector and yk is the kth
output variable (k = 1, . . . , N). These two hyperplanes are continuously joined
together at {x : xT (θ+ − θ−) = 0} as can be seen in Figure 1. As a result they are
called hinging hyperplanes. The joint△ = θ+−θ−, multiples of△ are defined hinge
for the two hyperplanes, yk = xT

k θ
+ and yk = xT

k θ
−. The solid part of the two

hyperplanes explicitly given by yk = max(xT
k θ

+,xT
k θ

−) or yk = min(xT
k θ

+,xT
k θ

−).
For a sufficiently smooth function f(xk), the approximation with hinge functions
can get arbitrarily close if sufficiently large number of hinge functions are used. The
sum of the hinge functions

∑K
i=1 hi(xk) constitutes a continuous piecewise linear

function. The number of input variables n in each hinge function and the number
in hinge functions K are two variables to be determined. The explicit form for
representing a function f(xk) with hinge functions becomes

f(xk) =

K∑

i=1

hi(xk) =

K∑

i=1

〈max |min〉
(
xT
k θ

+
i ,x

T
k θ

−
i

)
(2.1)

where 〈max |min〉 means max or min.
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2.2. Hinge search as an optimization problem

The essential hinge search problem can be viewed as an extension of the linear
least-squares regression problem.

Given N data pairs as {x1, y1},{x2, y2},. . .,{xN , yN} from a function (linear or
non-linear) yk = f(xk), the linear least-squares regression aims to find the best
parameter vector θ̂, by minimizing a quadratic cost function. The optimalization
problem is deeply discoussed in [6], and in spite of using Gauss – Newton method
to solve the optimalization problem, the proposed identification algorithm applies a
much simpler optimization method, the so called alternating optimization which is a
heuristic optimization technique and has been applied for several decades for many
purposes, therefore it is an exhaustively tested method in non-linear parameter and
structure identification as well. Within the hinge function approximation approach,
the two linear submodels can be identified by the weighted linear least-squares
approach, but their operating regimes (where they are valid) are still an open
question.

For that purpose the FCRM method was used which is able to partition the
data and determine the parameters of the linear submodels simultaneously. In
this way, with the application of the alternating optimization technique and taking
advantage of the linearity in (yk − xT

k θ
+) and (yk − xT

k θ
−), an effective approach

is given for hinge function identification. The proposed procedure is attractive in
the local minima point of view as well, because in this way although the problem is
not avoided but transformed into a deeply discussed problem, namely the cluster
validity problem. In the following section this method is discussed in general,
and in Section 2.4 the hinge function identification and FCRM method are joined
together.

2.3. Constrained prototype based FCRM

Fuzzy c-regression models, deeply discussed in the literature, yield simultaneous
estimates of parameters of c regression models together with a fuzzy c-partitioning
of the data. It is an important question how to incorporate constrains into the
clustering procedure. These constrains can contain prior knowledge, or like in the
hinge function identification approach, restrictions about the structure of the model
(the relative location of the linear submodels).

This section deals with prototypes linear in the parameters. Therefore the pa-
rameters can be estimated by linear least-squares techniques. When linear equality
and inequality constraints are defined on these prototypes, quadratic programming
(QP) has to be used instead of the least-squares method. This optimization problem
still can be solved effectively compared to other constrained nonlinear optimization
algorithms.

The parameter constraints can be grouped into three categories:

• Local constrains are valid only for the parameters of a regression model,
Λiθi 6 ωi.
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• Global constrains are related to all of the regression models, Λglθi 6
ωgl, i = 1, . . . , c.

• Relative constrains define the relative magnitude of the parameters of two
or more regression models,

Λrel,i,j

[
θi

θj

]
6 ωrel,i,j (2.2)

For a throughout discussion how these constrains can be incorporated into the
identification approach (see [1]).

2.4. Improvements of Hinge identification
For hinge function identification purposes, two prototypes have to be used by

FCRM (c = 2), and these prototypes must be linear regression models. However,
these linear submodels have to intersect each other within the operating regime
covered by the known data points (within the hypercube expanded by the data).
This is a crucial problem in the hinge identification area [6]. To take into account
this point of view as well, constrains have to be taken into consideration as follows.
Cluster centers vi can also be computed from the result of FCRM as the weighted
average of the known input data points

vi =

∑N
k=1 xkµi,k∑N
k=1 µi,k

(2.3)

where the membership degree µi,k is interpreted as a weight representing the extent
to which the value predicted by the model matches yk. These cluster centers
are located in the “middle” of the operating regime of the two linear submodels.
Because the two hyperplanes must cross each other (see also Figure 1), the following
criteria can be specified:

v1(θ1 − θ2) < 0 and v2(θ1 − θ2) > 0 or (2.4)
v1(θ1 − θ2) > 0 and v2(θ1 − θ2) < 0.

These relative constrains can be used to take into account the constrains above:

Λrel,1,2

[
θ1

θ2

]
6 0 where Λrel,1,2 =

[
v1 −v1

−v2 v2

]
(2.5)

according to (2.2) and (2.4).
So far, the hinge function identification method is presented. The proposed

technique can be used to determine the parameters of one hinge function. In
general, there are two method to construct a piecewise linear model: additive and
tree structured models [6]. In this paper the later will be used since the resulting
binary tree structured hinge functions can have a simpler form to interpret and
more convenient structure to implement.
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Figure 1: Basic definitions and hinge identification restrictions (left) and the simulated
water heater (right)

3. Identification of dynamical systems by hinging
hyperplane models

So far, a general nonlinear modeling technique was presented and a new iden-
tification approach was given for hinging hyperplane based nonlinear models: ŷ =
f (x(k), θ) where f (.) represents the hinging hyperplane based tree structured
model and x(k) represents the input vector of the model. To identify a discrete-time
input-output model for a dynamical system, the dynamic model structure has to be
chosen or determined beforehand. A possible often applied structure is nonlinear
autoregressive model with exogenous input (NARX) where the input vector of the
model x(k) contains the delayed inputs and outputs of the system to be modeled
[1]. In several practical cases a simpler and more specific model structure can be
used to approximate the behavior of the system, which fits better the structure
of the system. Therefore, it can be an advantage for the identification approach
(models with simpler structure can be identified easier), and this model can be
more accurate. One such special case of the NARX model is the Hammerstein
model (see Figure 2), where the same static nonlinearity f is defined for all of the
delayed control inputs (for the sake of simplicity, SISO models are considered):

ŷ =

na∑

i=1

aiy(k − i) +
nb∑

j=1

bjf(u(k − j)) (3.1)

where y() and u() are the output and input of the system, respectively, and na and
nb are the output and input orders of the model. The parameters of the blocks of
the Hammerstein model (static nonlinearity and linear dynamics) can be identified
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Figure 2: Hammerstein system

by the proposed method simultaneously if the same linear dynamic behavior can
be guaranteed by all of the local hinging hyperplane based models. It can be done
in an elegant way utilizing the flexibility of the proposed identification approach:
global constrains can be formulated for the ai and bj parameters of the local models
(for a detailed discussion what constrains have to be formulated, see [1]). In the
following, the hinging hyperplane modeling technique is applied on a Hammerstein
type system, and it will be shown that it is an effective tool for that purpose.

3.1. Application to the identification of Hammerstein systems

Modeling of a simulated water heater (Figure 1) is used to illustrate the advan-
tages of the proposed hinging hyperplanes based models. The water flows through
a pair of metal pipes containing a cartridge heater. The outlet temperature, Tout,
of the water can be varied by adjusting the heating signal, u, of the cartridge heater
[1]. The performance of the cartridge heater is given by:

Q(u) = QM

[
u− sin(2πu)

2π

]
(3.2)

where QM is the maximal power and u is the heating signal (voltage). As the
equation above shows the heating performance is a static nonlinear function of the
heating signal. Hence, the Hammerstein model is a good match to this process.
The aim is to construct a dynamic prediction model from data for the output
temperature (the dependent variable, y = Tout) as a function of the control input:
the heating signal. The parameters of the Hammerstein model were chosen as
na = nb = 2. The performance of this modeling technique will be compared to
linear and feedforward neural network models.

The modeling performances can be seen in Table 1. In this example a hinge
function based tree with 4 leaves were generated. For the robust testing of the per-
formance of the model building algorithm, 10 fold cross validation method is used.
For comparison, a feedforward neural net and linear model was also trained and
tested using the same data. The neural net contains one hidden layer with 4 neu-
rons using tanh basis functions. As can be seen from the results, the training and
test error are comparable with the errors of the proposed method. A very rigorous
test of NARX models is free run simulation because the errors can be cumulated. It
can be also seen on Figure 3 that the identified models (the proposed ones, linear
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Figure 3: Free run simulation by the Hammerstein system (proposed hinge model, neural
network, linear model)

Training error Test error Free run
Linear model 0.0393 0.0449 0.387
Neural network 0.0338 0.0403 0.356
This paper 0.0367 0.0417 0.359

Table 1: Mean square errors of the generated models

models and the neural nets) perform very good also in free run simulation (the
system output and the simulated ones can hardly be distinguished). Although the
neural net seems to be more robust in this example, the proposed hinge model is
much more interpretable than the neural net [5]. This confirms that both the pro-
posed clustering based constrained optimization strategy and the hierarchial model
structure has advantages over the classical gradient-based optimization of global
hinging hyperplane models.

4. Conclusion

In this paper, a new approach was proposed to the identification of hinging
hyperplane based models. The proposed Fuzzy c-Regression Clustering based tech-
nique can be used to determine the parameters of two hyperplanes that cross each
other within the data space covered by samples. For that purpose, constrains
have to be taken into account by clustering. This identification technique avoids
the problems of the original hinging hyperplane identification method proposed by
Breiman. To get a general nonlinear model, a binary tree structured model has
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been used where the internal nodes split the data space linearly based on the iden-
tified hinge. It has been shown that the flexibility of the identification method,
i.e. the ability to take constrains into account, can also be utilized in the identifi-
cation of Hammerstein systems. The simultaneous identification of the blocks of
the Hammerstein model can be achieved in an elegant way. Modeling results for a
laboratory water-heater have shown that this type of model can be an alternative
to feedforward neural networks. An advantage of the proposed model structure
is that by using hinge hyperplanes in a binary tree structure, the obtained model
remains still interpretable.
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