
Proceedings of the 7 th International Conference on Applied Informatics
Eger, Hungary, January 28–31, 2007. Vol. 2. pp. 317–325.

SIP compression in mobile device
environment∗

Zalán Szűgyi, Zoltán Porkoláb

Eötvös Loránd Tudományegyetem
e-mail: gsd@inf.elte.hu, lupin@ludens.elte.hu

Abstract

Protocol (SIP) to establish, modify, and close sessions. The SIP messages
are text based and they have redundancy. Since in wireless environments the
bandwidth is limited, we need to decrease traffic during communication. One
solution is Signalling Compression (SigComp) which offers a robust, lossless
compression of SIP messages in a standardized way.

In this article we overview the possibilities to improve effeciency of Sig-
Comp. The standard defines the major functionality, but there are several
cases where the implementator can make decisions. The compressor modul is
the one where the standard give the most freedom to improve SigComp. We
have chosen the LZSS algorithm and looked for a good match function. We
examined the detailed possibilities and tuned different parameters regarding
the restricted resources of a mobile phone environment. Our result: in com-
mon usage the general algorithms were better, but using in SIP environment
our solution produced better efficiency.

Keywords: SIP, SigComp, Compression, LZSS

MSC: 68P30 Coding and information theory (compression)

1. Introduction

Nowadays the mobile phones has a rapid development. Some years ago they
have been used to make phone calls or send short messages only, but today in
addition we can use them to take photos, listen music, browse the Internet etc.
The new ones have operation system, so their users can install any kind of third
party software. As we can see, mobile phones are not just phones, they are small
computers. Now we can browse the Internet via WAP or connect to our Internet
provider via GPRS, and we can make phone calls from PC to mobile phone by
Skype or any other application using VoIP technology. However special gateways
need to establish these interactions. In the near future this will be much easier. The

∗Supported by Stiftung Aktion Österreich-Ungarn, Pr.N.: 66öu2.

317

318 Z. Szűgyi, Z. Porkoláb

3rd Generation Partnership Project (3GPP) (see [1]) chose the Internet Protocol
to the base of Universal Mobile Telecommunication System (UMTS). This means
each mobile phone will have its own IP address, and will be directly reachable by
every other member of the Internet.

There are several applications on the Internet for different type of real time
communication, such as voice call or video conference. These applications use
session base connections and they have their own well designed and well tested
protocols to manage the communication. When the new generation mobile system
will be introduced it should be expedient to apply these protocols to mobile devices
instead of developing new ones. During these implementations some new problems
must be solved, which do not exist in the original way. For example one of these
problems is: We are sitting in a car and talking via mobile phone. During the
talk, we leave the area of one mobile cell, and enter to another one. The used
communication protocol has to find the new location of our mobile device without
disconnecting.

The solution for these problems is the Session Initiation Protocol (SIP) (see
[2]), which is not a standalone protocol to replace the others, but extends their
functionality. There is another problem using Session Initiation Protocol. The
messages of SIP are text based, so the length of these messages is quite big. The
bottleneck of mobile communication is a bandwidth, so it is necessary to reduce
the size of these messages as much as possible.

The Signalling Compression (SigComp, see [3, 4]) subsystem is responsible to
compress SIP messages. Every message need to be compressed, so it is very im-
portant to do the compression fast and efficient. This article introduces one way
to implement an efficient SigComp subsystem.

The development is made in Nokia Hungary Kft, and our solutions are used in
business applications of this company.

In the second chapter the Session Initiation Protocol is introduced. In the third
chapter the five components of the Signalling Compression are described. In the
fourth one there are some common compression algorithms and methods which are
proper to use in mobile environment. In the fifth chapter you can find our solution,
and in the sixth one we justify our decisions.

2. Session Initiation Protocol

The Session Initiation Protocol (see [2]) is not the only standalone protocol,
which will replace the other session protocols in the future, but improves their
functionality. Let us look how does the session based communication work. To
establish sessions the proper protocol must exist (e.g. VoIP for voice communica-
tion). First the other endpoint need to be localized. Then we need to make sure,
the other endpoint is able to accept our request, and the proper protocol exists in
that side too (e.g. the old mobile phones cannot receive picture messages). These
tasks are made by SIP. When the connection is established, the SIP goes to the
background and give the control to the protocol, which suits to the chosen type of

SIP compression in mobile device environment 319

communication. When the communication finishes the SIP closes the connection.
The whole lifetime of a session based communication on mobile device can be seen
on the first figure, where Alice makes a phone call to Bob.

Figure 1: Sip message flow

The five main task of SIP

• User location: determination of the end system to be used for communication

• User availability: determination of the willingness of the called party to en-
gage in communications

• User capabilities: determination of the media and media parameters to be
used

• Session setup: “ringing”, establishment of session parameters at both called
and calling party

• Session management: including transfer and termination of sessions, modify-
ing session parameters

• and invoking services

3. Signalling Compression

As we can see in the previous chapter, several SIP messages are exchanged
to establish sessions. This messages are text based. In mobile environment the
bandwidth is the bottleneck, so it is very important to reduce the length of SIP

320 Z. Szűgyi, Z. Porkoláb

messages. The Signalling Compression subsystem (see [3, 4]) is responsible to com-
press these messages. The SigComp lays between local application and transport
layer. It means the application is not necessary to know whether the message is
sent or received compressed or uncompressed. On the second figure the overview
of the SigComp can be seen.

Figure 2: Overview of SigComp

There are five main modules of SigComp.

Compressor / Decompressor dispatcher

Just an interface. Provides some methods for the application and the transport
layer to send messages compressed, or uncompress received messages.

Compressor

This module does the compression. A mobile switch center can maintain several
connections at the same time. Each connection has its own compressor module.
The compression algorithm can be different in every module.

Decompressor

This module does the decompression. There is an Universal Decompressor
Virtual Machine (UDVM) in the decompressor side, which is similar to JVM but
its instructions designed to decompress messages efficiently. The first message must
contain the byte code of decompression algorithm to UDVM. That is why we can
use different compression algorithms.

SIP compression in mobile device environment 321

Statehandler

This module can store information about compression and decompression to
improve the efficiency of the next message’s compression. For example we use a
dictionary based compression algorithm. At the beginning the dictionary can be
filled with previously saved information about frequently used keywords. In this
way the compression will be better then the one with an algorithm started with an
empty dictionary. The UDVM byte code is stored in the Statehandler also.

4. Compression

There are several algorithms, which can compress SIP messages efficiently.
These are: Rice, SubExponential, Huffman, LZ77, LZSS, Deflate etc. Based on
a study from Szeged University (see [5]) about Signalling Compression, we chose
LZSS algorithm (see [6, 7]), because the decompression time is much less then with
the others, and the compression ratio is almost the same.

The LZSS algorithm is a dictionary based compression algorithm. The com-
pression algorithm has three main steps:

1. Find the longest prefix of the message in the dictionary.

2. Write the (p, n) pair, where p is the position of the prefix in the dictionary,
and the n is the length of it.

3. Write the prefix to the end of the dictionary.

In the zero step we fill up the dictionary with previously saved information
about the other messages.

We implemented the dictionary by circular buffer. It means that, when we write
the prefix into the dictionary and reach the end of it, then we continue the writing
at the beginning of the dictionary, we rewrite the characters there.

The decompression algorithm’s main steps:

1. Read the next (p, n) pair from input.

2. Jump to the p_felso index_th. position of the dictionary and write out n
characters.

3. Write the string coded by (p, n) to the end of the dictionary.

In zero step we must fill up the dictionary the same way we did it at the
compression side.

5. The match function

The match function is responsible to find the longest match in the dictionary.
This is the bottleneck of the algorithm, so it must be implemented efficiently. There
are several ways to implement the match function (see [8]).

322 Z. Szűgyi, Z. Porkoláb

Knuth-Morris-Pratt

His algorithm is an improved linear search. It can be faster then general linear
search by analyzing the pattern. This way is efficient when the pattern has big
repetition. Our patterns are mainly English words, so this method is not good for
us.

Lists

In this way we assign a linked list to each character of the alphabet. In the
lists we store the positions of the proper characters appearing in the dictionary. To
find the longest prefix it is enough to examine the dictionary at those positions,
which are staying in the list belongs to the starter character of the prefix. We
can improve this way to assign lists to two or three tuples of characters instead of
single ones. This way is quite good for us, because there is no big repetition in the
English texts, so the size of these lists are low. The disadvantage of this method is
the huge memory consumption, because we need to store at least one pointer for
every list, even they are empty.

Hash

Improvement of lists. We map the n-tuples of characters to the set of keys
which has significantly less elements. Then we assign lists to the keys only. This is
good for us because the most n-tuple’s list are usually empty, so the key collusion
is rare. In this way we can save a lot of memory.

6. One solution

The mobile switch centre can maintain hundreds of connections at same time,
sending and receiving SIP messages. Every outgoing message must be compressed
and every incoming message must be decompressed. Fast compression of SIP mes-
sages is very important. The bottleneck of the LZSS compression is the match
function, so we tried to improve that.

Our solution is based on hash. Because the dictionary is implemented by a
circular buffer, it can happen that an old part of the dictionary is rewritten by a
new one. In that way the characters are changed in the current position. So this
position value must be removed from the list belongs to the old tuple and inserted
to the new one.

Implementing our data structures of std::list (see [9]) makes two problems.

• Replace a position value from one list to another implies a node allocation
and deallocation, which are expensive.

• We can find the position value to remove only in linear time.

SIP compression in mobile device environment 323

Figure 3: Solution with reverse index vector

Our solution eliminates these problems. We introduced a new data structure.
It can be seen in the third figure.

On the left hand side vector we store pointers to the lists belonging to the keys
mapped to the pair of characters. These character pairs can be seen in the vector.
The list nodes contain the position values. In the Reverse index vector we store a
pointer to the node whose value is the same as its index. (Let suppose we start to
index the vector by 1.)

Let us see how it works. For example the message we want to compress starts
with “bc”. Now we calculate the key value of “bc” string which is two. After that
we get the second element of the vector, which contains a pointer to the proper list.
It is enough to find the longest prefix in the dictionary at 2nd, 5th and 7th position
because only those parts start with “bc”. After finding the longest prefix we need to
attach it to the dictionary. Because of circular buffer some parts of the dictionary
can be rewritten. Let suppose the ’b’ character on the fifth position changes. Now
we must remove the position 5 from the list belonging to “bc” and insert it to the
proper list (it depends on the new character). We can find the node contains 5 in
constant time, because it is stored in Reverse index vector. Instead of deallocating
the old node and allocating a new one it is enough to unlink it from the old list and
link it to the new one. The unlink can be done in constant time because we use
two direction linked lists. The lists can be unordered because finding the longest
prefix does not depend on the order of the positions and with the help of Reverse
index we can find every node in constant time. We can link the node to the front

324 Z. Szűgyi, Z. Porkoláb

of the list, so it can be done also in constant time. In this way we can compress
messages three times faster then we use brute force solution for match function.

Eventually we compared our solution with some well known common compressor
applications such as Zip (see [9]), Arj (see [10]), Rar (see [11]). Generally these
algorithms were better. But the SIP messages are relatively small. Their size is
about one or two kilobyte. There are plenty of SIP messages travelling from client
to server and vica versa during communication, and we have to compress these
message separately. In this way, when the text that we compress is small, our
solution is almost two times better then the general compressor applications. We
compressed many SIP messages with Zip, Arj, Rar and our SigComp solution, and
the average compression rates can be seen in the following picture.

7. Summary

The bandwidth is the bottleneck of mobile communication, so the compression
of messages is very important in the next generation of telecommunication. The
efficient compression has two meanings. One is to reach good compression ratio,
and the second is to do it fast. Our solution suits for both requirements. We
can compress the messages to half of their original size, and we can do it about
three times faster then useing brute force algorithm for match function. The Nokia
Hungary Kft. will apply our solution to its future business application. The 3G
technology is ready to be introduced all over the telecommunication world, and
soon it will replace the currently used GSM (see [1]) system. There are some
countries such as France and Italy where an earlier version of this technology is
already available.

SIP compression in mobile device environment 325

References

[1] www.3gpp.org

[2] Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston, A., Peterson,
J., Sparks, R., Handley, M., Schooler, E., Session Initiation Protocol, RFC
3261, (2002).

[3] Price, R., Bormann, C., Christoffersson, J., Hannu, H., Liu, Z., Rosen-
berg, J., Signaling Compression1 RFC 3320, (2003).

[4] Hannu, H., Christoffersson, J., Forsgren, S., Leung, K.-C., Liu, Z.,
Price, R., Signaling Compression (SigComp) - Extended Operations, RFC 3321,
(2003).

[5] Fridrich, M., Bohus, M., Sógor, L., Sógor, Z., Bilicki, V., Galambos, Zs.,
Szilágyi, T., Notaisz, K., Siket, P., Siket, I., Sey, G., Márton, Zs., Tóth,
G., István, R., Study Report of the Project: Signalling Compression Protocoll
Development (2002).

[6] Cormen, T. H., Leiserson, C. E., Rivest, R. L., Algoritmusok, (2001).

[7] Sándor, S., Programozási Módszertan II: Algoritmusok.

[8] Bell, T., Kulp, D., Longest-match String Searching for Ziv-Lempel Compression,
(1993).

[9] http://www.cppreference.com/cpplist/index.html

[10] http://en.wikipedia.org/wiki/ZIP_(file_format)

[11] http://en.wikipedia.org/wiki/Arj

[12] http://en.wikipedia.org/wiki/Rar

Zalán Szűgyi, Zoltán Porkoláb
Eötvös Loránd Tudományegyetem
Dep. of Programming Languages and Compilers
H-1117 Budapest, Pázmány Péter sétány 1/C.
Hungary

