
Proceedings of the 7 th International Conference on Applied Informatics
Eger, Hungary, January 28–31, 2007. Vol. 2. pp. 301–308.

On the correctness of template
metaprograms∗

Ádám Sipos, István Zólyomi, Zoltán Porkoláb

Dept. of Programming Languages and Compilers,
Fac. of Informatics, Eötvös Loránd University, Budapest

e-mail:{shp,scamel,gsd}@elte.hu

Abstract

C++ template mateprogramming (TMP) is a recently emerged program-
ming paradigm that assists the creation of efficient code and flexible libraries.
On the other hand, TMP is not yet widely used, due to the lack of coding
standards and methodologies applicable when writing metaprograms.

In this paper we present methods for writing efficient and reliable metapro-
grams. We define the correctness of metaprograms and the possible types
of failures to meet the specification. We describe the methods for creating
metaprograms meeting their specifications. One method is checking for ex-
pected properties of types and constants (concept checking). Another tool is
static assert, a construct capable of halting the compilation of an erroneous
program.

Keywords: C++, metaprogram, correctness

MSC: 68N19 Other programming techniques

1. Templates, metaprograms

1.1. Templates

Templates are an important part of the expressive power of the C++ language,
by enabling data structures and algorithms be parametrized by types. The mech-
anism behind a list containing integer numbers, or strings is essentially the same,
it is only the type of the contained objects that differs. With templates we can
express this abstraction, thus this generic language construct aids code reuse, and
the introduction of higher abstraction levels. Let us consider the following code:

template <class T> int main()
class list {

∗Supported by the Hungarian Ministry of Education under Grant FKFP0018/2002.

301

302 Á. Sipos, I. Zólyomi, Z. Porkoláb

{ .
public: .

list(); .
void insert(const T& x); list<int> li; // instantiation
T first(); li.insert(1928);
void sort(); }
.
.
.

};

This list template has one type parameter, called T, referring to the future type
whose objects the list will contain. In order to use a list with some specific type,
an instantiation is needed. This process can be invoked either implicitly by the
compiler when the new list is needed, or explicitly by the programmer. During
instantiation the template parameters are substituted with the concrete arguments,
and this new code is compiled.

The template mechanism of C++ is unique, as it enables the definition of partial
and full specializations. Let us suppose that for some type (in our example int)
we would like to create a more efficient type-specific implementation of the list
template. We may define the following specialization:

template<>
class list<int>
{
public:

list();
void insert(const int& x);
int first();
void sort();
.
.
.
// a completely different implementation
// may appear here

};

The specialization and the original template only share the name. A specialization
does not need to provide the same functionality, interface, or implementation as
the original.

Another unique property of C++ templates is that not only types but also
integers, floating point numbers, pointers-to-functions and others may be template
parameters.

On the correctness of template metaprograms 303

1.2. Metaprograms
In case the compiler deduces that in a certain expression a concrete instance of

a template is needed, an implicit instantiation is carried out. Let us consider the
following codes demonstrating programs computing the factorial of some integer
number by invoking a recursion:

// compile-time recursion // runtime recursion
template <int N> int Factorial(int N)
struct Factorial {
{ if (N==1) return 1;

enum { value = N * return N*Factorial(N-1);
Factorial <N-1>::value }; }

};
template<>
struct Factorial<1>
{

enum { value = 1 };
};
int main() int main()
{ {

int r=Factorial<5>::value; int r=Factorial(5);
} }

As the expression Factorial<5>::value must be evaluated in order to initialize r
with a value, the Factorial template is instantiated with the argument 5. Thus
in the template the parameter N is substituted with 5 resulting in the expression 4
* Factorial<4>::value. Note that Factorial<5>’s instantiation cannot be fin-
ished until Factorial<4> is instantiated, etc. This chain is called an instantiation
chain. When Factorial<1>::value is accessed, instead of the original template,
the full specialization is chosen by the compiler so the chain is stopped, and the
instantiation of all types can be finished.

This is a template metaprogram, a program run in compile-time, calculating the
factorial of 5. Since this operation happens in compile-time instead of runtime,
this metaprogram may significantly slow the compilation process. On the other
hand, this operation calculating a number’s factorial results in a O(n) complexity
in runtime. By replacing the calculation to compile-time, it will cause only a O(1)
complexity in runtime. An important application of metaprograms is transfer-
ring calculations to compile-time, thus speeding up the execution of the program.
Among other important applications of metaprograms are the implementation of
concept checking [4] (testing for certain properties of types in compile-time), data
structures containing types in compile-time (e.g. typelist [3]), active libraries [6],
and others. By enabling the compile-time code adaptation, TMP is a style within
the generative programming paradigm [5]. Template metaprogramming is Turing-
complete [10], in theory its expressive power is equivalent to that of a Turing
machine (and thus most programming languages).

304 Á. Sipos, I. Zólyomi, Z. Porkoláb

As seen before in the Factorial example, a strong analogue exists between
compile-time and runtime entities:

Metaprogram Runtime program
(template) class subprogram (function, procedure)
static const and data
enum class members (constant, literal)
symbolic names variable
(typenames, typedefs)
recursive templates, abstract data structures
typelist
static const initialization initialization
enum definition (but no assignment!)
type inference

Table 1: Comparison of runtime and metaprograms

In the following with the help of this analogue we analyze the possible causes of
errors in metaprograms.

2. Error categorization

Metaprograms take action in compile-time utilizing the language’s type system.
In case a metaprogram describes an erroneous construct, the whole compilation may
fail. On the other hand the notion “erroneous” is ambiguous in the TMP world. In
the following we discuss different scenarios involving metaprogram errors.

Let us suppose we would like to print the numbers from 0 to 4. Let us consider
the following code:

#include <iostream>
int main ()
{

for (i=0; i!=4; ++i)
std::cout << i << std::endl;

}

This is an ill-formed program, with a diagnostic message. Since variable i is
undefined, the compilation of this program will fail. Thus the program does not
start to run. On the other hand, the algorithm itself is correct, and if the variable
was defined, the program would implement the functionality we had intended.

In the following an ill-formed program, with no diagnostic message is presented:

#include <iostream>
int main ()

On the correctness of template metaprograms 305

{
for (int i=0; ; ++i)

std::cout << i << std::endl;
}

Even though this code does compile, it implements an endless for loop. The
cause of the error is the missing loop condition, and this is the bug we will need to
find using some debugging method.

Now we define these error types in the metaprogramming realm. Let us suppose
that the Factorial metaprogram described in Section 1.2 is implemented incor-
rectly, as Factorial<1> has a syntactic error, a semicolon is missing at the end of
the definition.

template <int N>
class Factorial
{
public:

enum { value = N*Factorial<N-1>::value };
};
template<>
class Factorial<1>
{
public:

enum { value = 1 };
} // ; missing

This metaprogram is in many ways similar to our first program: this is an ill-
formed template metaprogram, with diagnostic message. The metaprogram has
not been run: no template instantiation happened.

Now let us suppose that we have forgotten to write the full specialization to the
Factorial template.

template <int N>
struct Factorial
{

enum { value = N*Factorial<N-1>::value };
};

// specialization for N==1 is missing

int main()
{

const int r = Factorial<5>::value;
}

As the Factorial template has no explicit specialization, the Factorial<N-1>
expression will trigger the instantiations of Factorial<1>, then Factorial<0>,

306 Á. Sipos, I. Zólyomi, Z. Porkoláb

Factorial<-1> etc. We have written a compile-time infinite recursion. This is an
ill-formed template metaprogram with no diagnostic message.

A third type of metaprogram errors is the exhaustion of compiler resources. This
may happen when we invoke the –otherwise correctly implemented– Factorial
template metaprogram with some large number: Factorial<125>::value. The
C++ language standard guarantees only 17 implicit instantiations of the same
template, going beyond this number will result in a compile-time error. However,
many compilers can be parameterized to accept deeper instantiation levels. Thus
the compiler will attempt to finish the compilation, and will obviously fail when
using up all of its resources.

3. Writing correct metaprograms

We have seen that metaprograms are error-prone due to the complex syntax,
and the new programming approach needed to create them. With the increasing
number and complexity of metaprograms used in both the academic world and the
IT industry, programmers need to rely on error preventing and debugging methods
in order to create correct metaprograms.

Error prevention has both theoretical and practical methods. General theoret-
ical methods for proving program correctness have been researched for decades. A
common property of these formal verification methods is describing the abstract
program in a formal language and creating a proof for the program’s correctness
[1, 8, 7].

In the following we describe two practical methods for preventing metaprogram
errors.

3.1. Concept checking

There is no language-level mechanism in C++ to specify properties expected
from template arguments. In case of complex template metaprograms the lack of
sufficient support for checking argument properties may easily lead to errors. The
research area concept checking aims to develop special language constructs that
enable us to describe properties of template arguments, and other compile-time
entities like constants, types.

The research results are implemented in libraries like boost [4], and Loki [3].
The language’s designers have recognized the growing importance of template

metaprograms and concept checking in general. Thus the next C++ standard (due
in 2009-2010) will introduce the language construct concept.

3.2. Static assert

A runtime assert expects a logical expression, and if the expression’s value is
the program will be terminated with the error message assertion failed. Asserts
are used to check invariants, pre-, and postconditions.

On the correctness of template metaprograms 307

The assert’s compile-time equivalent is a static assert. These are language
constructs that when given a logical expression with the value false, will halt the
compilation, thus preventing an erroneous program coming into being. Another
important feature of a good static assert implementation is the capability of printing
an appropriate error message informing the programmer about the error. In [3] the
following solution is proposed, utilizing template partial specialization:

template <bool, class msg> struct STATIC_ASSERTION_FAILURE;
template <class msg> struct STATIC_ASSERTION_FAILURE<true,T>{};

template<int x> struct static_assert_test{};

#define STATIC_ASSERT(B , error) \
typedef static_assert_test< \

sizeof(STATIC_ASSERTION_FAILURE< (bool)(B),error >)> \
static_assert_typedef_;

In case the assertion fails, “STATIC_ASSERTION_FAILURE” and the name of
the second macro parameter will both be included in the compiler’s error message.

struct SIZEOF_INT_NOT_EQUAL_TO_SIZEOF_DOUBLE {};

STATIC_ASSERT(sizeof(int)==sizeof(double),
SIZEOF_INT_NOT_EQUAL_TO_SIZEOF_DOUBLE)

This empty struct’s name can be used for further information passing.

4. Conclusion

In this paper we have introduced template metaprogramming (TMP), a gener-
ative programming style used for compile-time code manipulation. We have pre-
sented the definition of the correctness of metaprograms, and the types of errors
that might arise during the writing and executing of metaprograms. We have also
presented two approaches for debugging metaprograms, one using a modification
of the g++ compiler, and another utilizing a standard C++ language construct.

References

[1] Abrial, J.-R., The B-Book: Assigning Programs to Meanings, Cambridge Univer-
sity Press, (1996).

[2] ANSI/ISO C++ Committee, Programming Languages – C++, ISO/IEC
14882:1998(E), American National Standards Institute, (1998).

[3] Alexandrescu, A., Modern C++ Design: Generic Programming and Design Pat-
terns Applied, Addison-Wesley (2001).

308 Á. Sipos, I. Zólyomi, Z. Porkoláb

[4] Boost Concept checking, http://www.boost.org/libs/concept/_check.htm

[5] Czarnecki, K., Eisenecker, U. W., Generative Programming: Methods, Tools
and Applications, Addison-Wesley (2000).

[6] Czarnecki, K., Eisenecker, U. W., Glück, R., Vandevoorde, D., Veld-
huizen, T. L., Generative Programming and Active Libraries, Springer-Verlag,
(2000).

[7] Hoare, C. A. R., An Axiomatic Basis for Computer Programming, Communica-
tions of the ACM, 12:576.580, (1969).

[8] Valerie, N., Daniel, M., Viliam, S., Tree Automata in the Mathematical The-
ory, SAMI 2007 Proceedings, 5th Slovakian-Hungarian Joint Symposium on Applied
Machine Intelligence and Informatics, Poprad, ISBN 978-963-7154-56-0 (2007), 447–
456.

[9] Sipos, Á., Effective Metaprogramming, M.Sc. Thesis, Budapest, (2006).

[10] Veldhuizen, T., C++ Templates are Turing Complete.

[11] Veldhuizen, T., Using C++ Template Metaprograms, C++ Report vol. 7 no. 4,
(1995), 36–43.

