
Proceedings of the 7 th International Conference on Applied Informatics
Eger, Hungary, January 28–31, 2007. Vol. 2. pp. 277–284.

Runtime access control in C#∗

Krisztián Pócza, Mihály Biczó, Zoltán Porkoláb

Dept. of Programming Languages and Compilers
Fac. of Informatics, Eötvös Loránd University

e-mail: kpocza@kpocza.net, mihaly.biczo@t-online.hu, gsd@elte.hu

Abstract
Compile time or runtime visibility and access control checking is the key

part of modern languages and runtime environments. They enforce responsi-
bility separation, implementation and security policies. The Eiffel program-
ming language defines sophisticated selective access control, but most mod-
ern programming languages like C++, C# and Java do not have this feature
only a subset or combination of the following access modifiers: public, pri-
vate, protected, internal and friend. The .NET Framework enforces some
security policies in runtime called Code Access Security but this additional
mechanism is capable only to restrict external resource access for programs
written in any .NET-language like C#.

In this paper we describe the existing access control features of the C#
language then show a scenario where a more sophisticated access control is
required. We introduce a method level access control checking mechanism
to C# which is able to enforce Eiffel-like selective export in runtime. Our
implementation does not require the modification of the compiler and the
caller, only the callee, and introduces minimal syntactic overhead. It can be
a practical solution for modular systems where runtime security is important.

Keywords: object-oriented programming, access control, runtime, C#

MSC: 68N15 Programming languages

1. Introduction

Compile time or runtime visibility and access control checking is the key part of
modern languages and runtime environments. The two main fundamental concepts
of object oriented programming languages are encapsulation and inheritance [6].
Encapsulation means that the programmer collects related services and data in
a single type or class and enforces strong cohesion between them while hides the
internal implementation and data structures from the outside world. Inheritance
is a parent child relationship between types or classes which attract polymorphism

∗Supported by the Hungarian Ministry of Education under Grant FKFP0018/2002.

277



278 K. Pócza, M. Biczó, Z. Porkoláb

based on the virtual nature of methods. Access control checking can be performed
in compile time and in runtime also.

Using access control we can determine whether particular classes and class
members can be accessed from and published to the outside world. Access control
enforces a built-in security system in point of class member access. Different parts
and modules can see and invoke only a slice of data stored and services implemented
in the program.

In this paper we describe the existing access control features of different pro-
gramming languages especially the C# language, then show a scenario where a
more sophisticated access control is required. We introduce a method level access
control checking mechanism to C# which is able to enforce Eiffel-like selective ex-
port [2] in runtime. Our implementation does not require the modification of the
compiler and the caller, only the callee, and introduces minimal syntactic over-
head. It can be a practical solution for modular systems where runtime security
is important. After that we show the performance of our solution and discuss the
results.

2. Access control features of different languages

In this section we describe the existing access control features of different pro-
gramming languages especially the C# language.

The C++ language can be regarded as the ancestor of many modern program-
ming languages like C#, D and Java therefore we describe the access control fea-
tures of the C++ language [3] first. Access control can be performed at class
level and class member level also. The default class level access control in C++
is private which can be changed to public. It means that by default a class is not
visible to the outside world but this behaviour can be overridden. Class members
can be declared as public, private and protected. Public members are reachable
from any method of any class while private members can be reached only from the
current class methods. Class members declared as protected can be reached from
the methods of the current class and the derived classes. In C++ there is a special
kind of methods and classes called friend. Friend methods and classes can access
all the private and protected members of a particular class which accepts them as
friend. C++ has three kinds of inheritance mode (public, private and protected)
which controls the access control of the inherited members in the derived class.
This results in a matrix which can be seen in Table 1.

Access modifier in the base class

Inheritance mode Public Private Protected

Public public private protected
Private private private private
Protected protected private protected

Table 1: Inheritance modes and access modifiers in C++



Runtime access control in C# 279

Members that become public in the derived class can be accessed in the derived
class and also from the outside world. Members that become protected can be
accessed only in the derived class, while members that become private are hidden
in the in the derived class and cannot be accessed from the outside world.

The Java programming language [7] does not have such complex access control
features like C++. Class level access control in Java can be public or package-
private. Package-private visibility means that a particular class is visible only in
the package where it was defined. At class member level, Java has four levels of
access control: public, private, protected and package-private (default). In contrast
to C++, Java does not have different kinds of inheritance levels. The inherited class
members of the base class behave in the same way as in the public inheritance mode
of C++.

The Eiffel language has a very different approach [2] to access control that the
previously described C++ and Java languages. It has selective export, which means
that different class members (features in Eiffel’s terminology) can be accessed from
different set of classes. For example we can define that feature “A” can be accessed
by everybody, feature “B” cannot be accessed from the outside world, while feature
“C” can be accessed from “Class1” and “Class2”, and feature “D” can be accessed
from “Class1” and “Class3”.

In the Ruby programming language [4] access control is determined dynamically,
as the program runs because Ruby is a fully interpreted language. The access
control implementation of Ruby is very near to the other popular object oriented
languages; therefore it is only interesting because the access control checking is
done in runtime not in compile time.

In C# [1], the access control mechanism is very similar to Java’s implementa-
tion. C# has two levels of access control: class and class member level. A class can
be public, private and internal. Public classes are accessible by everybody; private
classes can be accessed from the current namespace. Internal (default) classes be-
have in the same way as package-private classes in Java; they are accessible from
the current assembly. At class member level C# has five different access modi-
fiers: public, private, protected, internal and protected internal. Public, private,
protected and internal members behave in the same way as in Java. Protected
internal members behave as if they were protected and internal at the same time.

3. Motivation

In the previous section we described how modern object oriented programming
languages implement access control. In this section we will show that the current
implementation of access control in C# is insufficient in some scenarios, while
Eiffel’s implementation would be sufficient. Consider the C# code fragment:



280 K. Pócza, M. Biczó, Z. Porkoláb

Listing 1. C# code fragment with insufficient access control.

class Book
{

public string GetTitle() { ... }

public double GetPrice() { ... }
public void SetPrice(double price) { ... }
public BookReaderStream Read() { ... }

}

The Book class shown in Listing 1 can return the title and the price of the book
it represents, it can give a stream which is responsible to retrieve the book’s content
and it exposes a method which can set the price of the book. These methods have
to be public because we want them to be reachable from the outside world.

We can ask the following questions:

1. Should everybody have the right to set the price of the book?

2. Should everybody have the right to read the book?

The answer of these questions is clearly no. Only somebody from the bookstore
can set the price of the book and only the reader of the book can read the book.

If we were using the Eiffel programming language we could easily distinguish
which class members are accessible by different callers.

4. Implementation

In the previous section we described a scenario where the current access control
features of C# are insufficient. In this section we describe the aims and conditions
we would like to reach and match in the context of access control in C#.

The most important aim is to implement a mechanism that can restrict the
access of public methods in the same way as Eiffel’s selective export. The com-
piler cannot be modified because we would like to use the authentic Microsoft C#
compiler which cannot be altered. Because we cannot modify the compiler then
access control checking can be done only in runtime like in Ruby. We would like
to reach our aim with minimal syntactic overhead. Because the solution should be
easy to read and understand; therefore we have chosen attributes and inheritance.
(Attributes are standard language elements of C# which can annotate some static
information about different language elements like classes, methods, etc.) When
an unauthorized access is encountered an exception should be thrown. Consider
the following example:



Runtime access control in C# 281

Listing 2. C# code fragment with runtime access control.

class Book : RuntimeAccessControlBase
{

[AllowedCallerClass(typeof(Reader))]
[AllowedCallerClass(typeof(BookStore))]
public string GetTitle() { ... }

[AllowedCallerClass(typeof(Reader))]
[AllowedCallerClass(typeof(BookStore))]
public double GetPrice() { ... }

[AllowedCallerClass(typeof(BookStore))]
public void SetPrice(double price) { ... }

[AllowedCallerClass(typeof(Reader))]
public BookReaderStream Read() { ... }

}

In Listing 2 attributes are used that indicate which caller types can access the
particular methods, and the class is inherited from the RuntimeAccessControlBase
class. We have not modified the compiler and do the job with minimal syntactic
overhead. The attributes only declare which caller types can access the methods
but cannot check; therefore a custom call interception mechanism should be incor-
porated into the system. This way a custom implementation could check if the
caller is in the list of allowed callers specified by the attributes.

4.1. High-level implementation
Because the attributes only declare which caller types are able to reach the

particular methods, the RuntimeAccessControlBase class has to have some special
behaviour where the access control can be implemented.

Listing 3. The implementation of RuntimeAccessControlBase class.

[Intercept]
public class RuntimeAccessControlBase : ContextBoundObject
{
}

Consider the implementation of the RuntimeAccessControlBase class in List-
ing 3: As it can be seen the RuntimeAccessControlBase class is inherited from
ContextBoundObject and has the Intercept attribute. ContextBoundObject [1, 5]
is a system class which resides in the System namespace of the Microsoft .NET
Base Class Library and it is responsible to provide a dedicated context to every



282 K. Pócza, M. Biczó, Z. Porkoláb

object which inherits from ContextBoundObject. The context is created during the
activation of the context-bound objects, and destroyed when the object becomes
garbage. Usage rules can be added to these objects by specifying an attribute in-
herited from ContextAttribute. In our case this attribute is called Intercept which is
implemented by the InterceptAttribute class. These usage rules are enforced when
method calls are intercepted by the .NET Common Language Runtime.

Far behind the Intercept attribute there is the implementation that is respon-
sible to check that the caller is from the list of allowed callers that the Allowed-
CallerClass attributes specify.

4.2. Low-level implementation

As we have mentioned previously the InterceptAttribute class is inherited from
the ContextAttribute [5] class and a new context is created during the activation
of the context-bound object. The default constructor of InterceptAttribute has
to call the constructor of ContextAttribute which has one string type parameter
and pass a unique identifier (in our case “Intercept”). Here we have to override the
GetPropertiesForNewContext method which is called at activation time and has one
IConstructionCallMessage type parameter called ctorMsg. The ctorMsg object has
a ContextProperties collection, and a new InterceptProperty class instance is added
to this collection. The InterceptAttribute class can be seen in Listing 4.

Listing 4. Implementation details of InterceptAttribute attribute.

[AttributeUsage(AttributeTargets.Class)]
class InterceptAttribute : ContextAttribute
{

public InterceptAttribute()
: base(InterceptProperty.IDENTIFIER)

{
}

public override void GetPropertiesForNewContext(IConstructionCallMessage ctorMsg)
{

ctorMsg.ContextProperties.Add(new InterceptProperty());
}

}

The InterceptProperty implements the IContextProperty and the IContribu-
teObjectSink interfaces which enforce us to add some methods and properties to
the class like Name, IsNewContextOk and GetObjectSink. The Name property
should return the same unique identifier specified before (“Intercept”), the IsNew-
ContextOk should return true. The GetObjectSink has two parameters:

1. A MarshalByRefObject [1, 5] called obj which specifies a remote reference to
the original object.

2. An IMessageSink called nextSink which specifies the next message sink.



Runtime access control in C# 283

The method also returns an IMessageSink. In our case we return a new Inter-
ceptSink type class instance which accepts the nextSink property in its constructor
(Listing 5).

Listing 5. GetObjectSink method.

public IMessageSink GetObjectSink(MarshalByRefObject obj, IMessageSink nextSink)
{

return new InterceptSink(nextSink);
}

Every method call is represented by a message and returns a message also which
represents the return value. The InterceptSink class implements the IMessageSink
interface.

The most important method we have to implement in this class is the SyncPro-
cessMessage, which accepts an IMessage parameter (represents the method call)
and also returns an IMessage (represents the return value). The method enforces
the runtime access control rules described by the AllowedCallerClass attributes by
calling CheckSelectiveVisibility, and calls the next sink (Listing 6).

Listing 6. SyncProcessMessage method.

public IMessage SyncProcessMessage(IMessage msg)
{

CheckSelectiveVisibility((msg as IMethodCallMessage).MethodBase);

return _nextSink.SyncProcessMessage(msg);
}

The CheckSelectiveVisibility method simply loops through the attributes of the
currently intercepted method stored in the MethodBase member of msg and checks
if the direct caller is specified by any of these attributes. If so then it allows to
continue the program otherwise throws an InvalidCallerException exception.

5. Performance results

We created a simple class with empty methods and enabled the runtime access
control checking method described in this article. We used empty methods to be
able to measure the pure performance of our solution. It performed about 4000
calls on a 2.6 Ghz Pentium 4 computer using the Microsoft .NET Framework 2.0.
We can ask the question if this is eligible or not. The answer is that it depends
on the use case. If the methods are simple class member variable accessors then
our solution is not eligible. However if the methods perform some database, file or
network access then the performance is eligible because an average database, file
or network operation can take much more time than 1/4000 seconds.



284 K. Pócza, M. Biczó, Z. Porkoláb

6. Further work

We have shown a new runtime access control checking method for the C#
language which supports any .NET-language because the cross-language nature of
the .NET Framework.

In the current implementation only single caller class type checking is imple-
mented but we can extend it to support a class type and every type that is inherited
from the specified ones.

Properties are special parameterless methods in the C# language that are gen-
erally responsible for getting and setting a single class member variable; therefore
they are similar to Java’s getter/setter methods. It is important to add read/write
access support to our runtime access control solution to fully support the get/set
properties.

Classes can be placed in different roles at runtime or by specifying a custom
interface at compile time to be able to add role based security features to our
solution.

We can analyze the performance issues of our solution and fix it or maybe find
another implementation way.

References

[1] Albert, I. (et. al. ed.), A .NET Framework és programozása, Szak, (2004).

[2] Meyer, B., Eiffel, The Language, Prentice Hall, (1991).

[3] Stroustrup, B., A C++ Programozási nyelv, Hungarian translation (Z. Porkoláb
et. al. ed.), Kiskapu, (2001).

[4] Thomas, D., Fowler, C., Hunt, A., Programming Ruby, The Pragmatic Pro-
grammer’s Guide, Second Edition, Addison Wesley Longman, (2001).

[5] Lövy, J., Programming .NET Components, O’Reilly, (2003).

[6] Nyékyné, G. J. (et al. ed.), Programozási nyelvek, Kiskapu, (2003).

[7] Nyékyné, G. J. (et al. ed.), Java 2 útikalauz programozóknak 1.3, ELTE TTK
Hallgatói Alapítvány, Budapest, Hungary, (2001).

Krisztián Pócza, Mihály Biczó, Zoltán Porkoláb
Dept. of Programming Languages and Compilers
Fac. of Informatics, Eötvös Loránd University
Pázmány Péter sétány 1/c.
H-1117 Budapest
Hungary


