
Proceedings of the 7 th International Conference on Applied Informatics
Eger, Hungary, January 28–31, 2007. Vol. 2. pp. 271–276.

Why code complexity metrics fail on the
C++ standard template library∗

Norbert Patakia, Zoltán Porkolába, Edit Csizmásb

aDept. of Programming Languages and Compilers
Fac. of Informatics, Eötvös Loránd University, Budapest

e-mail: {patakino, gsd}@elte.hu
bDept. of Informatics, Fac. of Mechanical Engineering and

Automation Kecskemét College, Kecskemét
e-mail: csizmas.edit@gamf.kefo.hu

Abstract

Since McCabe’s cyclometric measure, structural complexity have been
playing an important role measuring the complexity of programs. Complex-
ity metrics are used to achieve more maintainable code with the least bugs
possible.

C++ Standard Template Library (STL) is the most popular library based
on the generic programming paradigm. This paradigm allows implementa-
tion of algorithms and containers in an abstract way to ensure the config-
urability and collaboration of the abstract components. STL is widely used
in industrial softwares because STL’s appropriate application decreases the
complexity of the code significantly.

Many new potential errors arise by the usage of the generic programming
paradigm, including invalid iterators, notation of functors, etc.

In this paper we present many complexity inconsistencies in the applica-
tion of STL that a precise metric must take into account, but the existing
measures ignore the characteristics of STL.

Keywords: metrics, generic programming

MSC: 68N30 Mathematical aspects of software engineering

1. Introduction

1.1. Software complexity metrics
Metrics play an important role in modern software engineering. Testing, bugfix-

ing cover an increasing percentage of the software lifecycle [13]. In software design
∗Supported by GVOP-3.2.2.-2004-07-0005/3.0.

271



272 N. Pataki, Z. Porkoláb, E. Csizmás

the most significant part of the cost is spent on the maintenance of the product.
The cost of software maintenance highly correlates with the structural complexity
of the code. The critical parts of the software can be identified in the early stages
of the developement process with the aid of a good complexity-measurement tool.

In the software development process abstractions play a central role. An ab-
straction focuses on the essence of a problem and excludes the special details.
Abstractions depend on many factors: user requirements, technical environment,
and the key design decisions. In software technology a paradigm represents the di-
rectives in creating abstractions. The paradigm is the principle by which a problem
can be comprehended and decomposed into manageable components. In practice,
a paradigm directs us in identifying the elements in which a problem will be decom-
posed and projected. The paradigm sets up the rules and properties, but also offers
tools for developing applications. These methods and tools are not independent of
their environment in which they occur.

The last 50 years of software design has seen several programming paradigms
from automated programming and the FORTRAN language in the mid-fifties, to
procedural programming with structured imperative languages (ALGOL, Pascal),
to the object-oriented paradigm with languages like Smalltalk, C++ and Java.
However, it is important to understand that new paradigms cannot entirely replace
the previous ones, but rather form a new structural layer on the top of them.
Object-orientation is a new form of expressing relations between data and functions,
however, these relations implicitly existed in the procedural paradigm.

Software metrics have always been strongly related to the paradigm used in
the respective period. Metrics applied to different paradigms than the one they
were designed for, might report false results [10]. The McCabe Cyclomatic com-
plexity number [4] was designed for measuring the testing efforts of non-structural
FORTRAN programs. Piwowarksi [7], Howatt and Baker [3] extended the cyclo-
matic complexity with the notion of nesting level in order to describe structured
programs better. After the object-oriented paradigm became widely accepted and
used, both the academic world, and the IT industry focused on metrics based on
special object-oriented features, like number of classes, depth of inheritance tree,
number of children classes, etc. [2]. Several implementations of such metrics are
available for the most popular languages (like Java, C#, C++) and platforms (like
Eclipse).

1.2. C++ Standard Template Library(STL)

The C++ Standard Template Library (STL) is the most popular library based
on the generic programming paradigm [1]. STL is widely-used, because the library
is the part of the C++ Standard [12]. It consists of many useful generic data
structures and generic algorithms, that work together with containers. STL is
based on generalization and generalization results in simplified interface.

C++ STL consists of three main parts: containers, iterators and algorithms.
Containers (e.g. vector, list, map, set, etc.) are the generalization of arrays, so
they hold elements. Iterators guarantee access to the elements in containers. It-



Why code complexity metrics fail on the C++ standard template library 273

erators are nested types of containers. Iterators are a generalization of pointers,
their standard interface originates from pointer-arithmetic. Algorithms are fairly
irrespective of the used container, because they work with iterators. For instance,
we can use the for_each algorithm with all containers. The complexity of the li-
brary is greatly reduced because of this layout. As a result of this layout we can
extend the library with new containers and algorithms simultaneously. This is a
very important feature, because object-oriented libraries do not support this kind
of extension. The C++ standard guarantees the complexity of the operations.

STL applies the generic programming paradigm, so we can expect that the com-
mon metrics can fail on this library because of the metrics’ paradigm-dependence.
As we will see, the old metric tools are not precise enough.

2. Positive effects

STL is a popular library, because it greatly reduces the complexity of a program
from the view of programmers. The library offers many positive effects to code,
but some of these effects cannot be measured by widely-used metrics.

STL makes the code more abstract, more powerful, more expressive, so pro-
grammers can avoid many mistakes [5]. STL is a standard library, many books
and online references can be found (for example [1, 5, 12]).

3. Trivial inconsistencies

Many inconsistencies can be found between the common metrics and STL. Some
of these inconsistencies are quite clear.

One of the most obvious inconsistency is the widely-used object oriented metrics
fail on C++ Standard Template Library, because this library is based on generic
programming and implementing classes is unnecessary. Of course, we use objects
and classes when the STL is applied, but we can write STL-based code without any
new classes. Hence, the object-oriented metrics may fail on STL-based programs.

Another important feature is that STL is standardized library, so names of
functions and classes in the library are well-known. The names express their be-
haviour, for instance the copy algorithm copies elements, the sort algorithm sorts
a container, etc. No external library can achieve this important feature, and no
existing metric can measure this special advantage.

STL has been designed as a generic programming library, so STL has a reduced
interface: algorithms can be applied to more container types. The basic usage of
the library is easy of attainment because of the reduced interface. This is a good
feature, because beginner programmers do not shy away from STL. But this point
is also not measured.



274 N. Pataki, Z. Porkoláb, E. Csizmás

4. Complexity inconsistencies

In this section we examine some more sophisticated problems.

4.1. Error diagnostics

Error diagnostics usually do not matter when measuring software complexity.
Metrics ignore syntactical and semantical errors in the code and usually examine
programs as error-free software.

A simple mistake in STL-based code causes very long and incomprehensible
error diagnostics. For example, more thousand character long error messages are
not rare and often refer to unknown and unseen types and objects. Sometimes the
errormessage points to the implementation of STL.

Some software tools help us to reduce the complexity of the messages, but these
tools depend on the compiler and STL implementation.

Modification or maintain of STL-based code can be more difficult because of
the complicate error diagnostics, so we should take it into account.

4.2. Functors

C++ functors are special objects that offer an operator() to simulate function-
calls. Functors are quite common objects in STL-based code, because functors can
avoid the overhead of non-inline functioncalls and some problems about the name
of template functions to get the code to compile.

The problems of functors are their special requirements. Functor classes are
often inherited from special classes that only support some typedefs. The names of
these base classes are unary_function and binary_function. These base classes do
not increase the complexity of a functor from the viewpoint of STL programmer.

Functors are always passed by value. Polymorphism and value passing an object
do not work together, because the object would be sliced. So, polymorphic functors
are not allowed.

4.3. Sorted ranges

Many problem arise from the inadequate usage of sorted ranges. Some algo-
rithms have a special precondition, e.g. the input range must be sorted (for ex-
ample, binary_search, equal_range, set_union, etc.). But the compilers do knot
know what “sorted range” means, so the compiler cannot help us at this point. If we
call an algorithm of this kind to an unsorted range, it causes undefined behavior.
Unfortunately STLlint [14] cannot discover the improper usage of these algorithms.
Using this kind of algorithms increases the complexity of the code.

Using the same sorting predicate to the sort and algorithm is important. If
anyone violates this constraint it also leads to undefined behavior.



Why code complexity metrics fail on the C++ standard template library 275

4.4. Dataflow
Dataflow models measure by the parameter-passing [11]. This means the com-

plexity of a program is based on parameters: how to read or write the arguments.
A basic problem is that we cannot read all parameterflows from an STL-based

code. For example we write a functor and we call an algorithm with this functor
as an argument. It is invisible that the code will execute the functor’s functioncall
operator.

Another problem is that we cannot decide if an algorithm modifies the container.
For instance, let us consider the following two declarations. The find algorithm does
not modify the container, but the sort algorithm does:

template <typename InputIter, typename T>
InputIter find(InputIter first, InputIter last, const T& t);

template <typename RanIter>
void sort(RanIter first, RanIter last);

On the other hand, the parameters are not independent. A container is passed
by two iterators that define the range. If we call an algorithm usually call it with
special iterators: begin and end iterators. It is so common that the programmers
cannot make a mistake. So, iterators as parameters are very closely to count them
twice.

5. Some proposals

In the papers [9, 11] a multiparadigm metric is described. AV-graph measures
three main points of a given program: the structure of the program, the dataflow
in the program, and the complexity of the used data structures.

We have seen that the dataflow model is not precise enough. Informally speak-
ing, the control structure also fails on STL-based code, because the usage of STL
replaces many loops and if statemens.

It is also a common problem what can we mean by complexity of the STL’s
data structures. The complexity cannot be an STL implementation-specific value.

Complexity of STL’s data structures should be based on some “semantical con-
cepts”: for instance, basic behaviour of the container (e.g. vector’s reallocting strat-
egy), special parameters of a data structure, how copying works, etc.

6. Conclusion

C++ Standard Template Library is a widely-used library based on the generic
programming paradigm. Software metrics are mostly paradigm-dependent, so we
can expect that the common metrics fail on C++ STL. In this paper we present
many inconsistencies between STL and the widely used metrics. Our aim is to
calibrate an old metric to measure STL-based code.



276 N. Pataki, Z. Porkoláb, E. Csizmás

References

[1] Austern, M. H., Generic Programming and the STL, Addison-Wesley (1999).

[2] Chidamber, S. R., Kemerer, C. F., A metrics suit for object oriented design,
IEEE Trans. Software Engeneering, vol. 20, (1994), 476–498.

[3] Howatt, J. W., Baker, A. L., Rigorous Definition and Analysis of Program
Complexity Measures: An Example Using Nesting, The Journal of Systems and
Software 10, (1989), 139–150.

[4] McCabe, T. J., A Complexity Measure, IEEE Trans. Software Engineering, SE-
2(4), (1976), 308–320.

[5] Meyers, S., Effective STL, Addison-Wesley (2001).

[6] Pataki, N., Porkoláb, Z., Istenes, Z., Towards Soundness Examination of the
C++ Standard Template Library, In Proc. Electronic Computers and Informatics,
ECI’06, Herl’any, (2006).

[7] Piwowarski, R. E., A Nesting Level Complexity Measure, ACM Sigplan Notices,
17(9), (1982), 44–50.

[8] Porkoláb, Z., Sillye, Á., Comparison of Object-Oriented and Paradigm Inde-
pendent Software Complexity Metrics, ICAI’04, Eger, (2004).

[9] Porkoláb, Z., Sillye, Á., Towards a multiparadigm complexity measure, In. Proc
of QAOOSE Workshop, ECOOP, Glasgow, (2005), 134–142.

[10] Seront, G., Lopez, M., Paulus, V., Habra, N., On the Relationship between
Cyclomatic Complexity and the Degree of Object Orientation, In Proc. of QAOOSE
Workshop, ECOOP, Glasgow, (2005), 109–117.

[11] Sipos, Á., Pataki, N., Porkoláb, Z., On Multiparadigm Software Complexity
Metrics (extended abstract), In Proc. of 6th Joint Conference on Mathematics and
Computer Science, Macs’ 06, Pécs, (2006).

[12] Stroustrup, B., The C++ Programming Language, Special Edition, Addison-
Wesley (2000).

[13] Szabó, Cs., Samuelis, L., The A-Shaped Model of Software Life Cycle, In Proceed-
ings of 5th Slovakian-Hungarian Joint Symposium on Applied Machine Intelligence
and Informatics, Poprad, ISBN 978-963-7154-56-0 (2007) 129–135.

[14] Gregor, D., STLlint, http://www.cs.rpi.edu/~gregod/STLlint/


