
Proceedings of the 7 th International Conference on Applied Informatics
Eger, Hungary, January 28–31, 2007. Vol. 2. pp. 247–255.

Implementation of a finite state machine
with active libraries in C++∗

Zoltán Juhász, Ádám Sipos

Department of Programming Languages and Compilers
Faculty of Informatics, Eötvös Loránd University

e-mail: {cad, shp}@inf.elte.hu

Abstract

Generative programming is an approach to generating customized pro-
gramming components or systems. C++ template metaprogramming is a
generative programming style. With metaprogramming we can reduce the
runtime cost of our programs, more extensible libraries can be made, and the
creation of active libraries is also supported. Active libraries are not passive
collections of routines or objects, as are traditional libraries, but take an ac-
tive role in generating code. Active libraries provide higher abstractions and
can optimize those abstractions themselves.

Our goal is to demonstrate the connection between Finite State Machines
and active libraries. One of the fields where Finite State Machines are appli-
cable is the implementation of complex protocol definitions. Since often only
the results of test cases of a protocol are obtainable, the developer himself has
to define and implement his own state machine description. With the help of
active libraries we are able to use a compile-time Finite State Machine im-
plementation, and do some monitoring at compile-time, such as consistency
checking of the state machine’s state table, or error checking. Another aim of
the compile-time state machine implementation is the enhanced effectiveness.

In this paper we introduce the Finite State Machine’s formal definition,
and then discuss the possible implementation techniques. We analyze the
functionality, and place special emphasis on compile-time solutions. We de-
scribe the algorithms that carry out error checking and transformations on
the Finite State Machine’s state table. Our implementation of the state min-
imization algorithm based on the Boost::MPL library is also described.

Keywords: C++, Boost::MPL, Boost::Statechart, Finite State Machine,
Template, Metaprogramming, Active Library

MSC: 68N19 Other programming techniques

∗Supported by the Hungarian Ministry of Education under Grant FKFP0018/2002.

247

248 Z. Juhász, Á. Sipos

1. Templates and metaprograms in C++

Templates are one of the most important components of the expressiveness of
C++. They were introduced into the language for supporting code reuse and to
introduce a higher level of abstraction. Most C++ programs use data structures
e.g. stacks, arrays etc. The language does necessitate that these containers must
have an appropriate implementation for every type they will be used with, which
is inconvenient since you have to write separate implementation for every new type
introduced.

In C++ you can create constructs that can merge the common parts of the type-
dependent code into a template class or function. These can be parameterized with
an arbitrary type that meets every requirement needed by the template.

The benefits are obvious: the fact, that you need to write the common opera-
tions and algorithms for several types just once reduces the possibility of introduc-
ing flaws and supports code tracking.

In 1994, Erwin Unruh, a member of the C++ standardization committee pre-
sented a program, which was able to generate prime numbers during the compila-
tion [1]. This was the first known template metaprogram. Later researches have
pointed out that the meta-language defined by C++ templates is Turing-complete
[2], so we are able to write loops and conditional statements in metaprograms.

2. Metaprograms and Active Libraries

In line with the evolution of programming languages, new and more devel-
oped libraries have emerged. Even FORTRAN programs utilized libraries that
implemented the frequently occurring algorithms. With the growing popularity
of Object-Oriented programming languages, libraries transformed and evolved: in-
stead of a set of methods and functions, they contain a set of classes and inheritance
hierarchies. However these libraries are still passive: the author has to make all
the relevant decisions at the time of the implementation of the library. In some
cases this is inconvenient.

Consider the following semi-C++ code [3]:

template <class T, class S>
? max(T a, S b)
{

if (a > b)
return a;

else
return b;

}

We are writing a function that holds two parameters and returns the greater
one. The two parameters’ type can be different. It is clear, that we cannot decide

Implementation of a finite state machine with active libraries in C++ 249

whether a or b will be bigger at runtime, so we cannot decide which type would
be the right one for type of the return value. On the other hand with the help
of metaprograms, we can develop a very simple strategy that tells us which type,
T or S has a bigger representation field, so in a very plain situation we can select
the suitable return type. For an average passive library writer this is a mission
impossible, he cannot even make this simple call since does not know the actual
type of parameter a or b· · · but the compiler does!

An Active Library takes an active role in the compilation [4]. They provide
domain-specific syntax; they make decisions by the information provided by the
compiler at compile time. They make optimizations, transformations and safety
checking.

The aim of this paper is to highlight the connection between Finite State Ma-
chines and active libraries, and to introduce a special kind of active library, which
implements the Moore reduction procedure [5] for a compile time defined Deter-
ministic Finite Automaton.

3. Finite State Machine

The Finite State Machine (FSM) is a model of behavior composed of a finite
number of states, transitions between those states, and optionally actions. It works
over a set of states, the transitions between those states are managed by the transi-
tion function depending on then input symbol (event). In the rest of this paper we
use the expression Finite State Machine (FSM), automaton or machine in terms of
Deterministic Finite State Machine (DFSM).

3.1. A Mathematical model of Finite State Machine
A transducer Finite State Machine is a six tuple [6], consisting of

• A finite, non empty set of input symbols, let Σ denote it. We are referring to
this set as the set of events.

• A finite, non empty set of output symbols, let Γ denote it.

• A finite set of States let S denote it.

• Start or Initial state, an element of let S, let q0 ∈ Q denote it.

• A Transition function: δ : Q × Σ → Q .

• An Output function, let ω denote it.

In our model we are using a sixth component, which is a set of actions. The sixth
component holds the available actions that can be executed through a transition
between two states. Note that our model uses the Moore machine [6].

Deterministic Finite State Machines, Deterministic Finite Tree Automatons
[12] etc., are a widespread model for implementing a communication protocol, a
program drive control flow or lexical analyzer among others.

250 Z. Juhász, Á. Sipos

4. Common implementation techniques

There are a number of different FSM implementation styles from hand-crafted to
professional hybrid accomplishments. In the next section we review some common
implementation techniques.

4.1. The Hand-crafted

This is the simplest, maybe the most efficient but the least flexible solution of the
implementation of a DFSM. The transition function’s rules are enforced via switch-
case statements. States and events are regularly represented by enumerations,
actions are plain function calls. The biggest drawback of this implementation is
that it is suitable only for the representation of simple machines, since the larger
the automaton, the more error prone and hard to read its code.

4.2. Object-oriented

The object-oriented representation is a very widespread implementation model.
The transition function behavior is modeled by the state transition table (STT).
Table 1 shows a sample STT:

Current State Event Next State Action

Table 1: State Transition Table

A good example of such an automaton implementation is the OpenDiameter
Library’s FSM [7].

One of the main advantages of the Object-Oriented solution over the hand-
crafted version is that the state transition rules and the code of execution are
separated and it supports the incrementality development paradigm in software
engineering[13].

The drawback of an average OO FSM implementation is that you define and
build your state transition table at runtime. This is definitely not free of charge.
Sanity checking also results in runtime overhead.

4.3. Hybrid technique

The most promising solution is using the Object-Oriented and Generative -
(metaprogramming) techniques side by side. States, events and even actions are
represented by classes and function objects. And the most important thing is that
the STT is defined at compilation time.

As soon as the STT is defined at compile time you can execute algorithms on
it, you can transform it and after all you can optimize and check the whole state
transition table.

Implementation of a finite state machine with active libraries in C++ 251

An outstanding example of such a DFSM implementation is the Boost::State-
chart Library [8] that is UML compatible, supports multi-threading, type safe and
can do some basic compile time consistency checking.

5. Our implementation

Our goal was to develop a prototype of a library that carries out compound
examinations and transformation on the state transition table and shows the re-
lationship between Finite State Machines and Active Libraries over a template
metaprogram implementation of the Moore reduction procedure. However, the
complete review of our library is beyond the scope of this paper.

5.1. Applied techniques

We used many C++ template facilities extensively, such as SFINAE, template
specialization, parameter deduction etc. [9]. In a metaprogram you use compile
time constants, types instead of variables, objects respectively; template classes
and functions instead of functions and methods. To simulate cycles and if-else
statements we use partial and full template specializations.

Assignment is also unknown in the world of metaprograms, we use typedef
specifiers to introduce new type aliases, that hold the required result.

We have already mentioned that C++ templates are Turing complete, we also
saw that we are able to write loops and if-else statements, but we still need contain-
ers to write complex algorithms. We used Boost::MPL[10], which provides C++
STL-style[11] compile-time containers and algorithms.

5.2. Applied algorithms

In our model the State Transition Table defines a directed graph. We imple-
mented the Moore reduction procedure, we used the Breadth-First Search (BFS)
to isolate the graph’s main strongly connected component and with the help of a
special “Error” state we made it complete.

5.3. The State Transition Table

Much like the Boost::Statechart’s STT, in our implementation states and events
are represented by classes and structs (types). The STT’s implementation based
on the Boost::MPL::List compile-time container, as it follows:

6. Implementation of the algorithm

In the following we present the minimization algorithm implemented in our
active library.

252 Z. Juhász, Á. Sipos

typedef mpl::list<
// Current state Event Next state Action
// +-----------+----------+-------------+----------------------+
trans < Stopped , play , Playing , &p::start_playback >,
trans < Playing , stop , Stopped , &p::stop_playback >
// +-----------+----------+-------------+----------------------+
>::type sample_transition_table; // end of transition table

Figure 1: Implementation of our State Transition Table

6.1. Locating strongly connected components
The first algorithm that will be executed before the Moore reduction procedure

is the localization of the strongly connected component of the STT’s graph from
a given vertex. We have used the Breadth-First Search to determine the strongly
connected components, as it follows (some lines have been removed):

// Bread-First Search
template < typename Tlist, typename Tstate, typename Treached,
// STT ^ Start state ^ Reached states ^

typename Tresult = typename mpl::clear<Tlist>::type,
// ^ Result list is initialized with empty list

bool is_empty = mpl::empty<Treached>::value >
struct bfs
{

// Proccessing the first element of the reached list
typedef typename mpl::front<Treached>::type process_trans;
typedef typename process_transition::to_state_t next_state;

// (...) Removing first element
typedef typename mpl::pop_front<Treached>::type tmp_reached_list;

// (...) Merging reached and result list for further checking
typedef typename merge2lists<tmp_result_list, tmp_reached_list>

::result_list tmp_check_list;

// (...) Recursively instantiating bfs template class
typedef typename bfs< Tlist, next_state, reached_list,

tmp_result_list, mpl::empty<reached_list>::value
>::result_list result_list;

};

During the implementation of the algorithm presented, we had to implement var-
ious processes that carry out various transformations on a Boost::MPL::List con-
tainer. For example the merge2lists.

Implementation of a finite state machine with active libraries in C++ 253

6.2. Making the STT’s graph complete

The second algorithm that will be executed before the Moore reduction proce-
dure is making the graph complete. We introduce a special “Error” state, which
will be the destination for every undefined state-event pair. We test every state
and event and if we find an undefined event for a state, we add the following row
to the State Transition Table:

// Current state Event Next state Action
// +-----------+----------+-------------+----------------------+
trans < Stop , pause , Error , &p::handle_error >

Figure 2: Adding new transition

The destination state is the “Error” state. We can also define an error-handler
function object[11].

The result after the previously executed two steps is a strongly connected,
complete graph. Now we are able to introduce the Moore reduction procedure.

6.3. The Moore reduction procedure

Most of the algorithms and methods used by the reduction procedure have been
already implemented in the previously introduced two steps. Quote from wikipedia:

“The concept is to start assuming that every state may be able to combine with
every other state, and then separate distinguishable states into separate groups
called equivalence partitions. When no more equivalence partitions contain distin-
guishable states, the states remaining in the same group as other states are an be
combined. Equivalence partitions are numbered by the number of steps it took to
get to that point. The 0th partition contains all the states in one group, the 1st
partition contains states grouped by their outputs only. Every partition from then
on has groupings that are based on which group from the previous partition those
states’ next state fell under. The procedure is complete when partition n is the
same as partition n+ 1.” [5]

We have simulated partitions and groups with Boost::MPL’s compile time type
lists. Every partition’s groups are represented by lists in lists. The outer list
represents the current partition, the inner lists represent the groups.

Within two steps we mark group elements that need to be reallocated. These
elements will be reallocated before the next step into a new group (currently list).

After the previous three steps the result is a reduced, complete FSM whose STT
has only one strongly connected component. All of these algorithms are executed
at compile time, so after the compilation we are working with a minimized state
machine.

254 Z. Juhász, Á. Sipos

7. Results

The aim of the previously introduced techniques is to prove that we are able
to do sanity checks and transformations on an arbitrary FSM State Transition
Table. With the help of these utilities we can increase our automaton’s efficiency
and reliability without any runtime cost. We can also help the developer since
warnings and errors can be emitted to indicate STT’s inconsistency or unwanted
redundancy.

Our algorithms are platform independent because we are only using standard
facilities, defined in the C++ 2003 language standard (ISO/IEC 14882)[9].

There is only a little overhead on the code size and compilation time. The code
size increased about 30 bytes; the compilation time about 2 second (with 50 states
and randomly generated state transition rules).

8. Conclusion

In our paper we have presented an active library that can carry out checking
and transformations on a FSM’s State Transition Table. The algorithms were
implemented by C++ template metaprograms and executed at compilation time,
so these operations do not cause any runtime overhead; what is more, if reduction is
possible, the FSM is expected to be faster during its execution. On the other hand
with the aim of compile time checking and the emitted warnings and error messages
the program code will be more robust, since the program can only be compiled if it
meets the developer’s requirements. These requirements can be assembled through
compile time checking.

In this paper we have introduced the Active Libraries and presented an example
of the relation between such libraries and finite state machines. We have also
presented our active library implementation of the Moore reduction procedure and
other algorithms, which is based on the Boost::MPL Library and has a strong
connection to Boost::Statechart Library. The usage of such compile time algorithms
has little impact on the code size and the compile-time.

References

[1] Unruh, E., Prime Number Computation, ANSI X3J16-94-007/ISO WG21-462
(1994).

[2] Veldhuizen, Todd, L., C++ Templates are Turing Complete, (2003), http://
ubiety.uwaterloo.ca/~tveldhui/papers/2003/turing.pdf

[3] Prokoláb, Z., Advanced C++ Lessons, http://aszt.inf.elte.hu/~gsd/halado_
cpp/

Implementation of a finite state machine with active libraries in C++ 255

[4] Czarnecki, K., Eisenecker, U. W., Gluck, R., Vandevoorde, D., Veld-
huizen, T. L., Generative Programming and Active Libraries, Springer-Verlag
(2000).

[5] Moore, E. F., Moore Reduction Procedure, Wikipedia, http://en.wikipedia.org/
wiki/Moore_reduction_procedure

[6] Finite State Machine, Wikipedia, http://en.wikipedia.org/wiki/Finite_state\
_machine

[7] Fajardo, V., Ohba, Y., Open Diameter, http://www.opendiameter.org/

[8] Dönni, A. H., Boost::Statechart, http://boost-sandbox.sourceforge.net/libs/
statechart/doc/index.html

[9] Programming languages C++, ISO/IEC 14882, (2003).

[10] Boost Libraries, http://www.boost.org

[11] Stepanov, A. A., Lee, M., The Standard Template Library, X3J16/94-0095,
WG21/N0482 (1994).

[12] Novitzká, V., Mihályi D., Slodičák V., Tree Automata in the Mathematical
Theory, Proceedings of 5th Slovakian-Hungarian Joint Symposium on Applied Ma-
chine Intelligence and Informatics, Poprad, ISBN 978-963-7154-56-0 (2007), 129–135,

[13] Szabó, Cs., Samuelis, L., Notes on the role of the incrementality in software
engineering, Studia Universitatis Babes-Bolyai Informatica, vol. 51, no. 2 (2006),
11–18.

Zoltán Juhász, Ádám Sipos
H-1117 Budapest
Pázmány Péter sétány 1/C.
Hungary

