
Proceedings of the 7 th International Conference on Applied Informatics
Eger, Hungary, January 28–31, 2007. Vol. 2. pp. 219–228.

On the granularity of components∗

Ákos Dávida, László Kozmab, Tamás Pozsgaia

aDepartment of Mathematics and Computing, University of Pannonia
e-mail: davida@almos.uni-pannon.hu, pozsgai@szt.vein.hu
bDepartment of Software Technology and Methodology,

Eötvös Loránd University of Sciences
e-mail: kozma@ludens.elte.hu

Abstract

It is essential nowadays to be able to produce fault-free software products
within a given time for an estimated cost. Component-based Software De-
velopment (CBSD) is arguably one of the best choices, though the isolation
of components can also result in a more difficult integration process at the
end of the development. In this paper we study how the verification of a
component-based software system is influenced by changes in the granular-
ity of the components it consists of. These early design decisions affect the
complexity and flexibility of the composing objects of a system. The results
focusing on the differences are illustrated by simple examples.

Keywords: component-based software development, granularity, synthesis of
programs, model checking

1. Introduction

Defining the range of component granularity can be quite difficult because there
are several factors to be considered: the level of abstraction, the likelihood of change
and the complexity of a component, etc. In the case of a system consisting of too
small components there may be consequences: the interaction between smaller
components requires more time and resources. On the other hand, a component
that is too large provides more complex interfaces, is subject to more frequent
changes and makes a system using it less flexible. For these reasons it is essential
for a system architect to find a balance between the factors of cohesion and coupling
[8].

In the future we become more and more dependent of the proper functioning
of computer systems, so new methods are needed to increase our confidence in the
correctness of such systems. Today’s most widely used techniques of testing are

∗This research work was supported by GVOP-3.2.2-2004-07-005/3.0.

219

220 Á. Dávid, L. Kozma, T. Pozsgai

only able to post-verify applications and they are not able to guarantee that there
are no more hidden errors left in the design or in the code. However, with the
emergence of formal methods, it became possible to create correct programs with
respect to a given specification. Different types of synthesis methods and model
checking are the most widespread formal techniques in practice today.

2. Granularity supported by synthesis methods

There are several different methods for synthesizing programs [2, 4, 5, 7]. In
the following sections simplified variants of the Producer – Consumer Problem is
used to show a method based on Classical Logic introduced by G. R. Andrews [1].
The general steps of this solution are the followings:

• Defining the problem

• Determining the skeleton of the solution

• Generating an abstract solution

• Implementing the atomic operations (beyond the scope of this paper)

In order to generate an abstract solution the guard conditions (based on Dijkstra’s
Weakest Precondition Calculus) must be determined, in such a way that the in-
variant should hold before and after the atomic instructions [3]. In our examples
the atomic instruction <await E then S> is used, meaning that the sequence
of statements S is not executed until the evaluation of the logical expression E is
true.

2.1. Producer – Consumer Problem (coarse)

The first variant of the Producer – Consumer Problem is the simplest one
consisting of 1 producer, 1 consumer and a buffer with capacity 1. Let pt be the
fullness-pointer of the buffer B.

Specification:
Ia : 0 6 pt 6 1

Skeleton of the solution:
var pt : integer := 0; var B, a, aa : item;
invariant Ia

Producer ::
do true then
<pt := pt+ 1; B := a>;
od

On the granularity of components 221

Consumer ::
do true then
<aa := B; pt := pt− 1>;
od

The guard conditions described earlier are the followings:
Bp = wp(pt := pt+ 1, Ia)⇒ pt = 0
Bc = wp(pt := pt− 1, Ia)⇒ pt = 1

Abstract solution (with guards):
variables are just as before
invariant Ia

Producer ::
do true then
Deposit: <await pt = 0 then pt := pt+ 1; B := a>;
od

Consumer ::
do true then
Fetch: <await pt = 1 then aa := B; pt := pt− 1>;
od

Analysis:
With such an invariant Ia, the increase/decrease of the buffer cannot be di-

vided into microinstructions, must be handled as atomic instructions just as in the
example above. Let us take a look at the following solution:

Producer ::
do true then
Deposit: <pt := pt+ 1>; B := a;
od

Consumer ::
do true then
Fetch: <pt := pt− 1>; aa := B;
od

Executing the Producer and the Consumer processes it is possible that the
following sequence occurs.

<pt := pt+ 1>; <pt := pt− 1>; aa := B; B := a;

It means that a data is attempted to be read from buffer B before it has actually
been placed there. However, there are several correct solutions if we still want a
finer structure as the skeleton of the solution.

222 Á. Dávid, L. Kozma, T. Pozsgai

2.2. Producer – Consumer Problem (fine)

Specification:
It is based on the previous solution but a finer structure is used. Let pt be the
fullness-pointer of the buffer, inp and inc the indicators of the critical sections.

Invariant Ib:
0 6 pt 6 1 ∧ 0 6 inp 6 1 ∧ 0 6 inc 6 1 ∧ 0 6 inp + inc 6 1

Abstract solution (with guards):
var pt : integer := 0; var B, a, aa : item; var inp, inc : boolean := 0, 0;
invariant Ib

Producer ::
do true then # invariant Ib
Deposit: <await pt = 0 ∧ inc = 0 then inp := 1; pt := pt+ 1>; B := a;
<await true then inp := 0>;
od

Consumer ::
do true then # invariant Ib
Fetch: <await pt = 1 ∧ inp = 0 then inc := 1; pt := pt− 1>; aa := B;
<await true then inc := 0>;
od

Analysis:
The producing and consuming processes have (finer structure) more granularity

in this case, they express it better that producing and consuming are executed in
such a critical section preceded by an explicit prologue and followed by an explicit
epilogue.

Another advantage of this solution is that it can be easily extended to a system
with a buffer sized K > 1, more producers and consumers.

2.3. General extension of the Producer – Consumer Problem

Specification:
In this variant there areM producers, N consumers and a buffer with capacityK >
1. Let pti (the number of items deposited in the buffer), pto (the number of items
fetched from the buffer) be pointers where (pti − pto) is the fullness pointer, inp

the number of producers in their critical section and inc the number of consumers
in their critical section.

Invariant Ic:
0 6 pti − pto 6 K ∧ 0 6 inp 6 1 ∧ 0 6 inc 6 1 ∧ pti > 0 ∧ pto > 0

On the granularity of components 223

Abstract solution (with guards):
var pti, pto : integer := 0, 0; var B[1..K] of item;
var inp, inc : integer := 0, 0;
invariant Ic

Producer ::
do true then # invariant Ic
Deposit: <await inp = 0 then inp := inp + 1>;
<await pti − pto < K then pti := pti + 1>;
B[pti mod K] := a;
<await true then inp := inp − 1>;
od

Consumer ::
do true then # invariant Ic
Fetch: <await inc = 0 then inc := inc + 1>;
<await pti − pto > 0 then pto := pto + 1>;
aa := B[pto mod K];
<await true then inc := inc − 1>;
od

Analysis:
This is a general solution. Producers have mutual exclusion among them. Con-

sumers also have mutual exclusion among them. However, it is still possible that
producing and consuming can be executed concurrently. That is why it is worth
to divide the prologue into two atomic instructions.

It seems that the finer structure (more granularity) of the system makes it
possible to increase concurrency.

Note: This solution also works correctly in the case of a buffer with capacity
K = 1.

The coarser granularity has the advantage of expressing and illustrating specific
properties of programs better. This is illustrated by the following example.

2.4. A variant of the Producer - Consumer Problem

In this case there are M producers, N consumers and a buffer with capacity
K > 1. Two types of consumers C1 and C2 can be distinguished whether 1 or 2
products are consumed at once.
Specification:
Invariant Id : 0 6 pt 6 2

Abstract solution (with guards):
var pt : integer := 0; var B[1..2] of item; var a, aa, aa1, aa2 : item;
invariant Id

224 Á. Dávid, L. Kozma, T. Pozsgai

P ::
do true then
<await pt 6 1 then pt := pt+ 1; B[pt] := a>;
od

C1 ::
do true then
<await pt > 1 then aa := B[pt]; pt := pt− 1>;
od

C2 ::
do true then
<await pt = 2 then aa2 := B; pt := pt− 1; aa1 := B; pt := pt− 1>;
od

Analysis:
This solution has a very coarse granularity like the first example. It is prohibited

to produce and consume concurrently, but it is possible to produce an item and
consume the very same item alternately. As a result of this process C2 is never able
to consume 2 items from the buffer. This property is known as starvation problem.
However, at this level of abstraction it is possible to solve it by modifying the guard
condition of process C1.

C1 ::
do true then
<await pt = 2 then aa := B[pt]; pt := pt− 1>;
od

3. Model checking

Model checking, as opposed to synthesis methods, is an automatic technique
for verifying finite state concurrent systems. It is sufficient for the user to provide
a high level representation of the model and the specification to be checked, so no
verification expert is needed. The procedure normally uses an exhaustive search
of the space of a system to either terminate with the answer true, indicating that
the model satisfies the specification, or give a counterexample that may give an
important clue in finding subtle errors in complex systems. In some cases infinite
systems may be verified using model checking in combination with various abstrac-
tion and induction principles. The verification is ideally completely automatic. In
practice, human assistance is usually needed to analyze the results.

The main challenge in model checking is dealing with the state space explosion
problem. This problem occurs in systems with many components that can make
transitions in parallel. During the past ten years considerable progress has been
made in dealing with this problem [6].

On the granularity of components 225

The model and the specification of the general extension of the Producer –
Consumer Problem described in Section 2.3 (implemented in NuSMV) can be found
in Section 5.

4. Conclusions

In this paper we illustrated how the early design decisions on the granularity of
components may have an impact on essential properties of a system (e.g. concur-
rency, freedom of starvation) and how to organize them to meet certain demands,
usually in the form of logical expressions.

The examples above were created manually by a synthesis method suggested
by G. R. Andrews [1]. Although the algorithm is quasi-automatic, it is usually
not possible to synthesize large and complex software systems in the real business
world.

However, there are model checking tools available nowadays that are able to
verify automatically whether a system model is correct for a given specification.
It may be more complicated to describe the model of a system in detail, but the
process of verification requires less time and resources.

5. The general version of the Producer – Consumer
Problem implemented in NuSMV

In this scenario the system consists ofM producers (M = 2),N consumers (N =
2) and a buffer with capacity K > 1 (K = 2). Figure 1 shows the evaluation of
the specification formulas that can be further analyzed. Concurrency, for example,
between a producer and a consumer is checked with the following temporal logic
formula:

SPEC EF((prod1.state = producing | prod2.state = producing) &
(cons1.state = consuming | cons2.state = consuming))

The entire model of the Producer – Consumer Problem with all of the necessary
local and global specifications can be found here.

MODULE main

DEFINE
max := 2 ;

VAR
semaphore_prod : boolean ;
semaphore_cons : boolean ;
buffer : {0,1,2} ;
prod1 : process produce(semaphore_prod,buffer,max) ;

226 Á. Dávid, L. Kozma, T. Pozsgai

prod2 : process produce(semaphore_prod,buffer,max) ;
cons1 : process consume(semaphore_cons,buffer,max) ;
cons2 : process consume(semaphore_cons,buffer,max) ;

ASSIGN
init(semaphore_prod) := 1 ;
init(semaphore_cons) := 1 ;
init(buffer) := 0 ;

SPEC AG !((cons1.state = consuming) & (cons2.state = consuming))
SPEC EF((prod1.state = producing | prod2.state = producing) &

(cons1.state = consuming | cons2.state = consuming))

MODULE produce(semaphore_prod,buffer,max)

VAR
state : {idle,entering,producing,exiting} ;

ASSIGN
init(state) := idle ;
next(state) :=
case
(state = idle) & (buffer < max) : entering ;
(state = entering) & (semaphore_prod) : producing ;
state = producing : exiting ;
state = exiting : idle ;
1 : state ;

esac ;
next(semaphore_prod) :=
case
state = entering : 0 ;
state = exiting : 1 ;
1 : semaphore_prod ;

esac ;
next(buffer) :=
case
-- increasing the buffer pointer with case separation
(state = producing) & (buffer = 0): 1 ;
(state = producing) & (buffer = 1): 2 ;
1 : buffer ;

esac ;

FAIRNESS !(state = entering)
FAIRNESS !(state = producing)

On the granularity of components 227

FAIRNESS !(state = exiting)

SPEC AG(state = entering -> AF(state = producing))
SPEC AG(state = entering -> AF(state = idle))
SPEC AG(state = producing -> AF(state = idle))

MODULE consume(semaphore_cons,buffer,max)

VAR
state : {idle,entering,consuming,exiting} ;

ASSIGN
init(state) := idle ;
next(state) :=
case
(state = idle) & (buffer > 0) : entering ;
(state = entering) & (semaphore_cons) : consuming ;
state = consuming : exiting ;
state = exiting : idle ;
1 : state ;

esac ;
next(semaphore_cons) :=
case
state = entering : 0 ;
state = exiting : 1 ;
1 : semaphore_cons ;

esac ;
next(buffer) :=
case
-- decreasing the buffer pointer with case separation
(state = consuming) & (buffer = 2) : 1 ;
(state = consuming) & (buffer = 1) : 0 ;
1 : buffer ;

esac ;

FAIRNESS !(state = entering)
FAIRNESS !(state = consuming)
FAIRNESS !(state = exiting)

SPEC AG(state = entering -> AF(state = consuming))
SPEC AG(state = entering -> AF(state = idle))
SPEC AG(state = consuming -> AF(state = idle))

FAIRNESS

228 Á. Dávid, L. Kozma, T. Pozsgai

running

Figure 1: Result screen of the model checking process

References

[1] Andrews, G. R., A Method for Solving Synchronization Problems, Science of Com-
puter Programming 13 (1989/90), 1–21.

[2] Attie, P. C., Emerson, E. A., Synthesis of concurrent programs for an atomic
read/write model of computation, ACM TOPLAS, 23 (2), (2001), 187–242.

[3] Dijkstra, E. W., A Discipline of Programming, Prentice Hall, (1976).

[4] Emerson, E. A., Clarke E. M., Using branching time temporal logic to synthesize
synchronization skeletons, Science of Computer Programming, 2, (1982), 241–266.

[5] Hajdara, Sz., Kozma, L., Ugron, B., Synthesis of a System Composed by Many
Similar Objects, Annales Univ. Sci. Budapest., Sect. Comp. 22, (2003), 127–150.

[6] Krishnamurthi, S., Fisler, K., Foundations of Incremental Aspect Model Check-
ing, ACM TOSEM, Vol. 16 (April 2007), 1–39.

[7] Manna, Z., Wolper, P., Synthesis of Communicating Processes from Temporal
Logic specifications, ACM TOPLAS, 6, (1984), 68–93.

[8] Vitharana, P., Risks and Challenges of Component-based Software Development,
Communications of the ACM, Vol. 46 (August 2003), 67–72.

