
Proceedings of the 7 th International Conference on Applied Informatics
Eger, Hungary, January 28–31, 2007. Vol. 2. pp. 181–188.

Parallel processing search engine
for very large XML data sets∗

Vu Le Anh, Attila Kiss, Zoltan Vinceller

Department of Information Systems, ELTE university, Hungary
e-mail: leanhvu@inf.elte.hu, kiss@ullman.inf.elte.hu, vzoli@inf.elte.hu

Abstract

In this paper, we study several fundamental problems for building a par-
allel processing search engine for very large XML data sets. In our model,
the data set can be considered as a very large XML file, which is fragmented
and stored on different machines. The machines are connected by the high
speed local network and the query language is based on regular queries. The
following problems are introduced and studied: 1. The general model for the
system; 2. The query language; 3. The efficient query processing algorithm;
4. The efficient fragmentation algorithm. All introduced algorithms and so-
lutions bring into play the extensibility and the self-describing of XML data
sets, and they also promote the abilities of the parallel systems.

Keywords: Search Engine, Parallel Processing, Regular Queries, XML

MSC: 68P05, 68P20

1. Introduction

Nowadays highly parallel database systems displace traditional mainframe com-
puters for the largest database and transaction processing tasks. The architecture
of these systems is based on a shared-nothing hardware design [1] in which pro-
cessors communicate with one another only by sending messages via a high speed
local network. The data set is fragmented across disk storage units attached di-
rectly to each processor which allows multiple processors to scan the large data set
in parallel. These systems are easy to be expanded and powered by adding new
machines, new RAM memories and disks, which become more and more cheaper
and faster nowadays. On the other hand, XML has become the dominant standard
for exchanging and querying documents over the Internet. XML offers its users
many advantages, especially in self-describing, extendibility and inter-operability.

∗The authors thank the (partial) support of the Hungarian National Office for Research and
Technology under grant no.: RET14/2005.

181

182 V. L. Anh, A. Kiss, Z. Vinceller

XML is a good choice for representing various types, dynamic schema or open data
sets such as scientific databases, clustered web storages, open directories, etc.

In this paper, we study several fundamental problems for building a parallel
processing search engine for a very large XML data set. Firstly, we study the model
for our system. The XML data set is a labelled tree. The data tree is fragmented
into a collection of disjoints subtrees (or fragments) storing on the machines (or
sites). The number of fragments is considered constant. There is no replication in
our context. Fragments can be split, unified or changed from some site to the other.
The model is dynamic, adaptive and brings into play all the advantages of XML
and parallel database systems. Secondly, we introduce a simple query language for
our system. Our querying language is a class of regular path expressions, which are
the core of the most popular querying languages proposed for XML such as XPath
[4], XQuery [5], XML-QL [6]. The query language supports string pattern so that
retrieves label values more powerful. Thirdly, we study an efficient regular query
processing algorithm based on the partial evaluation [2, 3]. The partial evaluation
supports parallelism and guarantees the communication cost depends only on the
result of the query. However these algorithms have redundant operations. In
our algorithm, the redundant operations are rejected by preprocessing over the
tree index. The size of the tree index is considered as constant and the cost of
preprocessing is ignored. Our algorithm is more efficient than the older versions.
Finally, we study an on-the-fly fragmentation algorithm, which holds the balance
of the works between sites. We introduce a simple statistical system for measuring
the cost over each site and fragment. The statistical system and the union-, split-
and change fragment operations help us to manage the fragmentation efficiently.

The organization of our paper is as follows. We study the model of the system
in Section 2. We introduce a simple query language for our systems in Section 3.
The efficient query processing algorithm is introduced and studied in Section 4.
The fragmentation algorithm is introduced and studied in Section 5. Section 6
concludes our paper.

2. The model of the system

Let us see the example of very large XML shown in Figure 1(a). We represent
all public files of hungarian universities on Web by a XML tree. Each public
file is stored in each leaf of the tree. The path from the the root to the leaf is
determined by the URL address of this file. The absolute path of the leaf containing
file http://people.inf.elte.hu/leanhvu/papers/Conbined.pdf is /hu/elte/
inf/people/leanhvu/papers/Combined.pdf. All the public files of the ELTE
university are stored in the leaves under the node /hu/elte/. Clearly, with each
node is labelled, the tree XML is self-describing but has no fix schema. The users
can retrieve all information of the nodes. In the case the tree is big, it is fragmented
and stored in different sites.

Formally, the data set is modeled as a labeled tree T . Each node v of T is labeled
by a label value label(v) ∈ Σ (Σ is an alphabet). T is fragmented by a collection

Parallel processing search engine for very large XML data sets 183

1 a

2 b 3 a 4 a

5 a 6 c 7 c 8 b 9 a 10 b

11 b 12 c 13 a 14 b 15 b 16 a

17 a 18 b 19 a 20 e 21 f

22 a 23 b24 b

25 a

F0

F1

F2

F3

F4

F5

(b) Fragmented XML Tree T

hu

elte bme sote

inf cs csoma

...

...

people

ullman numnanal

...
...

...

...
......

kissleanhvu

papers

...
...

...

Combine.pdf DLIndexes.pdf

(a) XML tree for public files of Hungarian universities on Web

Figure 1: Example of fragmented XML trees

F of disjoint trees, or fragments Fi. The fragments are stored in different sites,
Sj . The set of sites are denoted by S. The sites are connected with each others
by high speed interconnection. The numbers of sites and fragments are considered
as constants. The fragment containing the root of the tree T , is called the root
fragment denoted by Froot. In Figure 1(b), this is fragment F0. F ′ is the parent-
fragment of F if there exists node v ∈ F ′ such that the root w of F is a child of v
in the original tree T . In Figure 1(b), F2 is a parent-fragment of F5.

3. The query language

Our query language is a class of regular path expression. Here is the grammar:
Exp← Exp|Exp | /P | //P

P ← ǫ | < StringLiteral > | P/P | P//P

ǫ is the empty word. < StringLiteral > can be a value of Σ or a subset of Σ
matching a string pattern. /, // and | signs are borrowed from XPath [4], and they
have the same meaning as in XPath. Here are several examples of our queries over
the XML tree in Figure 1(a):

1. //leanhvu/papers/-: Finding all papers of leanhvu.

2. //leanhvu/papers/%.pdf: Finding all papers of leanhvu in PDF file format.

3. //leanhvu/papers/-~|~//kiss/papers/-: Finding all papers of leanhvu or kiss.

4. /hu/elte/inf//%anal%: Finding all documents or directories under the domain
inf.elte.hu, whose name contains “anal” substring.

In these examples, -, %.pdf, %anal% are string patterns and hu, kiss, leanhvu,
papers, elte, inf are label values.

A data node matches the query if the label path from the root to the node
matching the query. The result of the query on the XML tree is the set of data nodes

184 V. L. Anh, A. Kiss, Z. Vinceller

q0 q1 q2 q3

a b a

* *

Figure 2: The query graph of the query Q = //a/b//a

matching the query. Each query is a regular expression and can be represented by
an automata. The graph of the corresponding automata is called query graph. The
result of the query on the XML tree can be determined by parsing the query graph
and the data graph with following rules: (1) beginning at (u0, q0) (u0, q0 are roots
of T and Q respectively); (2) From (u, q) we visit (v, p) for each v is a child of u
and there exists a transition from state q to state p with the label of u. (3) u is
an element of the result if some (u, q) is visited and there exists a transition from
state q to final state p with the label of u. Each pair (u, q) is visited maximum
one time as the XML tree is acyclic. An example of a query and the corresponding
query graph is shown in Figure 2. The result of this query over the tree data in
Figure 1(b) is {5, 13, 16, 19, 22, 25}.

4. The query processing algorithm

There are two criteria for the effectiveness of a query processing algorithm in
the parallel database systems. The first criterion is the responding time for the
answer. The second criterion is the total cost of processing and communication
of all sites. The responding time could be minimized by parallelism. The total
cost must be reduced in case we serve many users in the same time. As we have
known, there are two approaches for processing regular queries: stream processing
and partial parallel processing. There is no parallelism in the stream processing.
With the partial parallel processing, each site can compute the partial result in
parallel. However in the older versions [2, 3] of the partial parallel processing for
regular queries have redundant operations which can make the total cost be high.
Because the limit of the paper, we just describe our algorithm as an improved
version of partial parallel processing for regular queries with no comparison with
the other approach or the older versions.

The Fragment-Process(F ,q) operation returns the subset of the result in
F when we parse F and the query at the root of F and state q. The Match-
ing(q,label) function returns the set of transforming states q′ when the correspond-
ing non-determined automata stands at state q and receives the sign label. The
correctness of the operation can be examined easily by the rules in section 3 for
computing the result. Let us see the fragmented tree shown in Figure 1(b) and
the query shown in Figure 2. The operation (F4, q2) returns {16,22} and (F2, q0)
returns empty set.

Parallel processing search engine for very large XML data sets 185

F0

F1 F2 F3

F5 F4

a

a b a

b a

b ac ε

a b

Figure 3: The index of the XML tree T in Figure 1(b)

Fragment-Process(F ,q) Scan(u,q,F)
begin begin
1. FragResult← ∅ 1. for each state p ∈ Matching(q, label(u)) do
2. Scan(root(F),q,F) 2. if p is final state then
3. return FragResult 3. FragResult= FragResult∪ {u}
end 4. for each edge (u, v) and v ∈ F do

5. Scan(v,p,F)
Matching(q,label) end
begin
1. S ← ∅
2. for each transition (q, label, p) do
3. S ← S ∪ {p}
4. return S
end

In the older versions of the partial parallel processing approach, all possible
Fragment-Process operations are executed as they assume that they just know
about the information of links between fragments and no more. Clearly, the oper-
ation (F, q) is redundant or unreachable if (root(F), q) is not visited from the rules
in Section 3. In above example, in the case fragment (F2, q1), (F2, q2) and (F2, q3)
are redundant operations. We determine the reachable operations by preprocessing
over the tree index, TI , which is defined as follows:

Definition 4.1. Tree TI = (VI , EI) is the tree index of the XML tree T fragmented
by F, in which: (i) VI =F and each index node F ∈ VI is labeled by the root of
fragment F and (ii) (F, F ′) is an index edge if F is parent fragment of F ′. (F, F ′)
is labeled by the label path of path p, which is the path connecting from the root
of F to the root of F ′ but we reject two roots.

In the Process-Index(TI ,Q) function, RO containing the list of reachable op-
erations. The first reachable operation is (Froot, Root(Q)), where Root(Q) is the
start state of the automata. The Matching-II((F, F ′),q) returns the set of states
q′ such that if the operation (F, q) is reachable and F is the parent-fragment of
F ′ then the operation (F ′, q) is also reachable. The reachable operations in our
example are (F0, q0), (F1, q0), (F1, q2), (F2, q0), (F5, q0), (F5, q1), (F3, q0), (F3, q1),
(F4, q0), (F4, q3).

186 V. L. Anh, A. Kiss, Z. Vinceller

Process-Index(TI ,Q) Matching-II((F, F ′),q)
begin begin
1. RO← ∅ 1. S ← Matching(q, label(Root(F)))
2. Stack ← ∅ 2. Let 〈l1, . . . , lk〉 be the label of (F, F ′)
3. Stack.push((Froot, Root(Q))) 3. for i = 1 to k do
4. while Stack 6= ∅ do 4. S′ ← ∅
5. (F, q)← Stack.pop() 5. for each state q ∈ S do
6. RO ← RO ∪ (F, q) 6. S′ ← S′∪ Matching(q,li)
7. for each index edge (F, F ′) do 7. S ← S′

8. for each q′ ∈Matching-II((F, F ′), q) do 8. return S
9. Stack.push((F ′, q′)) end
10.return RO
end

We choose the master site from the sites to control the process. The tree index
is stored in the master site. The steps of the query processing algorithm are as
follows:

1. Determining reachable operations at master site.

2. Sending the reachable operations to each site.

3. Computing the reachable operations at each site in parallel.

4. Sending the results from some site to the master site.

5. The master waits until receiving all site results and determining the whole result.

Clearly, the number of communications between sites is constant. The commu-
nication cost depends only the result of the query. The cost of computing reachable
operations can be considered constant as the number of fragments and the size of
the tree index are considered constants

5. The Fragmentation Algorithm

Statistical system. Because the cost of preprocessing over the tree index is
ignored, the cost of processing and communication of the system is considered as
the total cost processing in each fragment and sending the results to the master. Let
tF,Q be the cost of processing (executing the Fragment-Process operations) and
sending the results of these operations to the master site when processing query Q
over fragment F . Let Q be the list of processed queries sorting by time in duration
time D. The total cost over fragment F in a duration D is tF,D =

∑
Q∈Q tF,Q.

The total cost over site S in duration D is tS,D =
∑

F∈S tF,D. The total cost of
the system in duration D is tD =

∑
S∈S tS,D. The number of data nodes of each

fragment F is nodenum(F).
Fragment operations. The Add-Fragment(S, F) procedure will add fragment

F to site S. To avoid the increase of the number of the fragments we will unify the
fragments in the same site into the only fragment in following cases: (i) F ′ is the
parent-fragment of F ′′, F ′ and F ′′ are unified naturally as F (see Figure 3(a)) (ii)
the roots of F1, F2, . . . , Fn is the same node stored in another site (see Figure 3(b)).

Parallel processing search engine for very large XML data sets 187

......

S S

(a) (b)

S S

virtual node (ǫ)
F’

F”

F

F1 F2 Fn F

ǫ

ǫ

ǫ

(c)

Figure 4: Unifying the fragments

They are unified by adding a virtual node as the root of the union-fragment and
linking this virtual node to the roots of children-fragments. The virtual node is
labelled by ǫ so that it will be ignored when processing the queries. The virtual
nodes are also reduced by the rule shown in Figure 3(c) so that they must be the
roots of the the fragments. The F ′ = Split-Fragment(F, n) function will split
F fragment into two parts in which the first part F ′ is the biggest subtree of F
whose the number of nodes is smaller than n. In the case unifying the fragments,
the cost over the union-fragment tFu is the total of the cost of the component
fragments. In the case spiting fragments, the cost over the split-fragment tFsplit

=
tFold

.nodenum(Fsplit)

nodenum(Fold)
. The Remove-Fragment(S, d) function returns a fragment

of S, whose the cost is smaller than d, and we remove this fragment from S.
Fragmentation Algorithm. ǫ, T are two chosen parameters (0 < ǫ < 1, T >

0). Our on-the-fly fragmentation algorithm manages the fragmentation satisfying
following condition: If tD > T then ∀ Si, Sj, tD,Si 6 tD,Sj and tD,Sj > 0, we have
1 > tD,Si

tD,Sj
> 1 − ǫ. The tD > T condition guarantees that the duration must be

enough long, the second condition implies that there is no big difference between
the works of the sites. The long duration guarantees the accuracy of the statistical
system and the stability of the fragmentation.

Let D be a duration longer than T ; tmax = max{tS,D}, tmin = min{tS,D},
t̄ = avg({tS,D}) and d = ǫ.t̄. In the case tmax − tmin 6 d, we have: ∀ Si, Sj ,
tD,Si 6 tD,Sj and tD,Sj > 0: 1 > tD,Si

tD,Sj
> tmin

tmax
= 1− tmax−tmin

tmax
> 1− ǫ.t̄

tmax
> 1− ǫ.

Clearly if tmax − tmin > d, the fragmentation is not “good”. Our fragmentation
algorithm is as follows:

Fragmentation(F,S, D, T , ǫ) Remove-Fragment(S, d)
begin begin
1.if tD > T and tmin

tmax
< 1− ǫ then 1. if ∃F ∈ S : tF < d then

2. d← ǫ.t̄ 2. S = S \ {F}
3. while tmax − tmin > d do 3. return F
4. Let Smax, Smin ∈ S such that 4. else
5. tSmax = tmax and tSmin = tmin 5. Let F be a fragment of S
6. F ← Remove-Fragment(Smax,

tmax−tmin
2

) 6. return Split-Fragment(F, f)
7. Add-Fragment(Smin, F) where f = ⌊nodenum(F).d

tF
⌋

8. Recomputing tmax, tmin, tSmax , tSmin end
end

188 V. L. Anh, A. Kiss, Z. Vinceller

6. Conclusion

In this paper, we have introduced and studied several fundamental problems of
parallel processing search engine for very large XML data sets. The XML tree is
fragmented into fragments, which are stored in sites. The fragments can be split,
unified or move from some site to the other. Our querying language is a class
of regular queries, and support string pattern matching. Our query processing is
based on partial evaluation, which allow each site process the query in parallel. The
redundant operations are rejected by preprocessing over the tree-index. We manage
the fragmentation by our simple statistical system and the fragment operations.
The fragmentation algorithm guarantees there is no big different processing cost
between sites so that there is no overload in our system.

We have analyzed and done the experiments for the different query processing
approaches over XML data sets in distributed environment. The results, which
will be published soon, show that our algorithm overcomes the other algorithms
both in theory and in experiment. We have no experiments for our fragmentation
algorithm yet. Our plan is to analyze and do experiments for our fragmentation
algorithm, and to implement a parallel search engine based on our ideas in future.

References

[1] Talwadker, A. S., Survey of performance issues in parallel database systems, In
Journal of Computing Sciences in Colleges archive, Vol. 18, Issue 6, (2003).

[2] Suciu, D., Distributed query evaluation on semistructured data, ACM Transactions
on Database Systems, Vol. 27 , Issue 1, (2002).

[3] Buneman, P., Cong, G., Fan, W., Kementsietsidis, A., Using partial evaluation
in distributed query evaluation, In Proceedings of the 32nd international conference
on Very large data bases, Vol. 32, VLDB (2006).

[4] Berglund, A., Boag, S., Chamberlin, D., Fernandez, M. F., Kay, M., Robie,
J., Simeon, J., XML path language (xpath) 2.0. (August 2002), http://www.w3.org/
TR/xpath20

[5] Boag, S., Chamberlin, D., Fernandez, M. F., Florescu, D., Robie, J.,
Simeon, J., XQuery 1.0: An XML Query Language, (November 2006), http:
//www.w3.org/TR/xquery/

[6] Deutsch, A., Fernandez, M., Florescu, D., Levy, A., Suciu, D., A query
language for XML. In Proceedings of the Eights International World Wide Web Con-
ference (WWW8), Toronto.

