
Proceedings of the 7 th International Conference on Applied Informatics
Eger, Hungary, January 28–31, 2007. Vol. 2. pp. 163–172.

Rapid Web application development and
modeling, based on XML and UML

technologies

Attila Adamkó

Department of Information Technology, University of Debrecen
e-mail: adamkoa@inf.unideb.hu

Abstract

Recently, many authors have argued that the demand for methods for
the development of small and medium sized Web applications has emerged.
However, the difficulty of developing these applications increases as the num-
ber of technologies they use increases and as the interactions between these
technologies become more complex. In this paper we present a design method
for Web applications which utilize UML and XML technologies to reduce this
complexity. Because there are several different types of Web applications, we
are focusing only a smaller part, specifically the Information System class of
the Web Information Systems. Our approach takes into account the data-
oriented aspects of these applications by creating a UML profile adapted for
the problem domain.

Rapid development is enabled by providing roundtrip engineering capabil-
ities with support for automatic code generation. We will explain the role of
the XML technologies, how could we apply different transforming stylesheets
to transform UML design models to different XML documents to represent
platform specific models utilizing the XMI (XML Metadata Interchange) for-
mat.

Utilizing these technologies reveals an advantage of our proposed method
that several steps can be performed in a semi-automatic way providing rapid
development and prototyping.

Categories and Subject Descriptors: D.2.10 [Software Engineering]: Design;
D.2.11 [Software Engineering]: Software Architectures; H.4.3 [Information
Systems Applications] Communications Applications

Keywords: MDA, Web application, Web modelling, XML, XMI, UML

1. Introduction

With the evolution of technologies the early static web sites are changing into
Web based distributed applications. However, the reorganization and the devel-

163



164 A. Adamkó

opment require knowledge and integration of several different technologies. For
this reason the development is often performed by teams consisting of graphics
designers through software developers.

Because short-time design and implementation are needed in response to the
new technologies, development groups often disregard methodological approaches
and system plans to reduce time resulting incomplete and difficulty maintainable
systems. Moreover, as we could read in [1], “Most Web developers pay little at-
tention to requirements elicitation and analysis, development methodologies and
process, quality, performance evaluation, configuration and project management,
and maintainability and scalability. Furthermore, application development heavily
relies on the knowledge and experience of individual (or a small group of) devel-
opers and their individual development practices rather than standard practices.
These systems also lack proper testing and documentation.”

These aspects outline the demand for lightweight methods in the development of
small- and medium size Web applications. An important factor in the development
for such Web applications is the support of successful communication – using a
common language – to avoid misunderstandings and expensive redesign. The UML
(Unified Modeling Language) fulfils these requirements by providing a family of
intuitive notations and diagrams which could be used to describe software systems
at a high level of abstraction. These models have to be focused on the information
relevant to the different roles in the development team. In many cases, we can
distinguish between the domain expert, who has knowledge about the business
processes behind the Web application, the graphic designer, who is in charge of
the creation of the user interface, and the developer, who has to build a working
software system based on the work of his partners. Furthermore, we have the
customer, who has little knowledge about the technical realization of the project,
but the diagrams and models helps to synchronize the requests with the software
system in the early stages of the development.

Performing early demonstrations is another important factor in the course of the
communication with the customer. Therefore, the methodologies should support
code-generation, which could shorten production time too. The models should
formulate the complete structural description of the website, resulting a working,
but incomplete prototype.

Following these guidelines, the presented approach helps in the development of
small- and medium sized data-oriented Web applications using UML. Use-cases,
activity- and class diagrams are used to describe the behaviour and the structure
of the Web application. These models make it possible for the team members to
investigate the system from different aspects. Naturally, there are several available
methodologies for Web applications and a good overview could be found in [2]
where the most relevant methods, such as OO-HDM, WebML, UWE and WSDM
are described.

However, most of the currently available development tools are based on the
J2EE specification for enterprise applications where Web applications have three
or four tier architecture. The tools claim to support the whole development pro-



Rapid Web application development . . . 165

cess but they offer little help for modelling the specialities of Web applications
because they only include low level implementation elements like Servlets, Java
Server Pages or HTML pages. We need more abstract modelling elements for nav-
igation, presentation and user interaction but they are missing or too special for a
given technology. Therefore, our proposed method deals with theses specialities of
the Web applications using a UML profile adapted to the problem domain.

1.1. Web Information Systems

The scope and complexity of Web applications could vary from small-scale
web sites to large-scale enterprise applications and could be grouped into several
different categories. In this paper we are concentrating only a smaller part of Web
applications which are defined by the Web Information System term.

We could find similar names like Web-based Information Systems or Web-based
Systems which appear to be the same concept. In [3] we could find several defini-
tions of Web Information Systems (WIS) like the following ones:

“A WIS is an Information System providing facilities to access complex data
and interactive services via the Web” [4]

or
“WIS represent a sub-category of mass information systems that are typically

support on-line information retrieval and routine task by way of self-service for a
large number (thousands or millions) of occasional users who are spread over many
locations” [5].

In our point of view the WIS is a computer-supported information system uti-
lizing the technology of the World Wide Web. In [3] we could find further catego-
rization of these systems depending on the direction of the communication and the
characteristic of the information.

Asymmetrical Symmetrical
communication communication

Objective Information Information
information Provider System
Persuasive Advertisement Community
information

Figure 1: Four perspectives on WIS

As the primary goal of us is to distribute information and concerning with the
data manipulation tasks too we shall deal with Information Systems hereafter or
as we called them formerly Data-oriented Web applications. The focus here is on
the derivation of the data structure and the distribution of the information from
the system to the users to support their work.

Using this perspective, typical examples of WISs are on-line systems, timetables,
registering systems, flight booking, etc. The objective of the system is to provide
a platform for users to reach their goals.



166 A. Adamkó

2. Design Strategies

There are numerous different approaches available for modeling Web applica-
tions as we mentioned in the introduction. Some of them focus on the modeling
notations, while others focus on the development process. Of course, Web appli-
cation development is not only supported at the conceptual level, but there are
several software tools available also, like Together Designer from Borland and Ra-
tional Rose from IBM.

However, the methodologies and the tools sometimes do not follow the same way.
We could apply a methodology or use a given tool if they meet our requirements,
but usually we need to make trade offs because something will not appropriate
for us. Moreover, there are several low-level design considerations built into these
development processes, so if we choose one our hands will be tied to it.

In contrast, if we would like to achieve greater independence in the develop-
ment process we need to use tools that could be independent from specific low-level
things. Here comes into the picture the MDA (Model Driven Architecture) devel-
opment process. Within MDA the software development process is driven by the
activity of modeling your software system.

2.1. MDA
The MDA development lifecycle is very similar to the traditional lifecycle. The

same phases are identified, but the main difference lies in the nature of the artifacts
that are created during the development phases. The artifacts are formal models
providing a given aspect of the system.

The first MDA model is a model with high level of abstraction that is inde-
pendent from any implementation detail. This is called a Platform Independent
Model (PIM). The PIM models are giving viewpoints of how the system will sup-
port the business. These models do not take care of implementation details like
relational databases, application servers and so on. They just concentrate on the
formalization of the requirements.

The next step is the transformation of these models into one or more Platform
Specific Models (PSMs). The transformation process will deal with the available
implementation technologies. For each specific technology a separate PSM is gen-
erated because most of the systems today span several technologies.

The final step in the development process is the transformation of each PSM to
code. Because a PSM fits its technology rather closely this transformation could
be done relatively easy.

The MDA also defines how these relate to each other. The most complex step
is the transformation of the PIM into one or more PSMs. In our point of view –
development of WISs – we need to consider the development processes and design
strategies of Web applications.

MVC We know that several similar problems could occur again and again in the
development process and we know that the design patterns could help to reuse
successful design and architectural solutions. In the design of Web applications a



Rapid Web application development . . . 167

useful way is indicated by the Model-View-Controller (MVC) design pattern which
is adopted in several frameworks. It can improve the application’s usability, the
creation of reusable code and helps to understand and clarify the functionality of
the program. The MVC pattern is very simple, yet incredible useful. Its importance
lies in the clear separation of the functional layers and their functionality.

However, in data-oriented Web applications, the model component becomes a
little simpler because small and medium sized Web applications mostly have simpler
business logic. Additionally, one of our main purposes is to derive a proper data-
structure which could be used in the subsequent steps. Furthermore, in the model
construction stage, the primary principle is not the description of the corresponding
object’s behavior, rather than the effective access and management of the data
because we are building systems around the data being managed.

3. The design method

The presently available methodologies are mostly using object-oriented ap-
proaches, cleanly separating each component’s functionality. The design of Web
applications builds on the requirements specification, just like the design of soft-
ware systems in general. In these systems the conceptual design of the domain is
based on use-cases and includes the involved objects that users will perform with
the application.

Particular emphasis is placed on the information exchanged between the user
and the system. The use case models serve as an input for modeling the content
of the application. However, in data-oriented cases it has proved to be an effective
strategy to build the object-oriented approach over the data-oriented, i.e. the data
structure will be the basis and the application will be built around that structure.

We may have a better understanding of the meaning of data-oriented approach
when we think about an existing database that needed to extend with a Web
interface. In these cases, the use-cases highly depend from the data model, but the
situation is the same when we need to develop new Web applications for managing
registration and information systems.

In our approach these use-cases will be used to outline the application tier
in Web applications or if think on the MVC pattern, the Controller module will
be formalized with these use-cases because this module is responsible to handle
user operations. These operations will be manipulating the data contained in the
data tier. This data management layer could be described by structural models,
typically class diagrams. The class diagrams also could be used automatically to
derive the corresponding relational database schema (which is a PSM).

The topmost presentation tier of a Web application is created by the Navigation
and Presentation model together. The Navigation model is used to describe at each
class which related classes can be visited from it (based on the associations). The
navigational elements between the classes could be realized with menus and links.
In the final step, the user interface is described by the presentation model, i.e. how
the requested data could be transformed together with the navigation structure to



168 A. Adamkó

the client’s language.

3.1. UML as PIM modeling language

The MDA approach requires a language which uses formal definitions so the
tools will be able to transform these models automatically. OMG recommends the
Uniform Modeling Language to construct the Platform Independent Models. The
strongest point in UML in our case is the modelling of the structural aspects of a
system. This is done through the use of class diagrams which enable us to generate
PSMs with all structural features in place.

In particular, we could extend the PIM’s structural class diagram with naviga-
tional aspects in order to derive the navigational model too. This could be seen in
Figure 2.

Figure 2: UML as MDA meta-model

3.2. Modeling steps

Our approach follows the Rational Unified Process, so the first step in the sys-
tem design is the analysis of requirements to gather and form the user requests.
Using use-cases and activity diagrams, we could determine the outline of the sys-
tem, and describe the fundamental functional aspects of the system from the per-
spectives of different users.

As we have data-oriented approach, the generality of the available tasks are
related by data management and manipulating activities. The actors represent
the different roles for users of the Web application. Use-cases are used to describe
available operations, and have to be detailed by activity diagrams. These activities
will produces the entry points of the navigation diagram for each user role and the
use-cases will serve the layout for the opening page for each actor (containing the
list of available tasks/entry points). The activity diagrams are used to describe



Rapid Web application development . . . 169

business logic and furthermore, they could be used to derive program modules and
code skeletons. Of course, we have a simpler case when we need to develop a system
for an existing database. In this situation, the structural model is deeply bounded
for the data structure, and we need to focus on the performable data management
tasks.

Additionally, there exist further important factors like performance or availabil-
ity. These aspects could influence our modeling method, and further researches will
consider these factors. However, at this time we are focusing on platform indepen-
dent models leaving untouched state models and page handling scenarios (sequence
diagrams).

3.2.1. Structural model

The conceptual design aims to build a domain model trying to take into account
as little as possible the navigation paths and presentation aspects. The main
modeling elements used in the conceptual model are: class, association and package.
For a common Web application the use-cases and the information-flow descriptive
activity diagrams could be the base of the conceptual design of the domain.

We could use an incremental approach to identify classes. First, we need to
identify the “active” entities in the system. At first glance, the actors identified
in the use-case appear to be prime candidates for being listed as potential classes.
Next, we need to identify the business domain (“passive”) entities in the system.
Usually, these business domain classes are mapped to either one or more database
tables.

However, in data-oriented cases the base of the conceptual model should be
the managed data, not the typical user activities and related use cases. So the
modeling sequence will be modified a little. At first, the information carrier classes
and attributes are determined, and only after this point will be detailed the use-
cases describing the user activities. The result of the first step will be a class
diagram which will determine the structure of the system, the classes and their
relations (like association, aggregation, . . . ). In this stage we need to ensure only
the data management activities to the users, so the tasks list will be shorten.

3.2.2. Navigational model

The next stage in the development process is the navigation model design.
The navigation model specifies which objects can be visited in a Web applica-
tion. Moreover, it defines the availability of the objects. In the navigation model’s
building process the developer takes crucial design decisions, such as which view
of he conceptual model is needed and what navigation path are required to ensure
the application’s functionality. The decisions are based on the conceptual model,
use-case model and navigation requirements that the application must satisfy.

The navigation diagram takes a structural diagram copy as its starting-point,
which could be extended with additional associations. Generally, these new asso-
ciations should be added for direct navigation to avoid navigation path of length



170 A. Adamkó

greater than one. However, there could be some conceptual classes that are not a
visiting target in the use-case model. It is irrelevant in the navigation model and
therefore it is omitted in the navigation diagram. The navigation inside the Web
application occurs along the associations, which are used to describe the relation
between navigation classes. These associations will appear as hyperlinks in the
user interface.

We could design proper models if we extend our navigation model with some
notations, like index, query and menu as we can found in UWE [6]. This new model
could serve as a background of the automatically generated navigation system.
Unlike UWE, we do not use new graphical notations in the diagrams; instead we
pick up new attributes extended with stereotypes to describe their functionality in
the navigation.

Figure 3: Structural and Navigational diagram

3.2.3. Presentation model

Our methodology does not deal with presentation aspects because the answer
for each request could be presented with an XML document containing the result
and the navigation structure starting from this entity. This XML document could



Rapid Web application development . . . 171

be transformed to the desired output format using XSLT. The structure of the
opening page for each user also could be derived from to related use cases.

4. Code generation

These models help to comprehend the problem domain, but these models would
offer more complex support if we could generate from them a working prototype of
the desired Web application. Naturally we agree that UML models are supposed to
be abstract, but it is not uncommon for a UML model to capture almost as much
technical information (transforming PIM to PSM). Our approach could be seen in
Figure 4.

Figure 4: Using UML and XML technologies to create prototypes

5. Further possibilities

In this paper we have illustrated how data-oriented Web applications differ from
traditional software, how complex and not at all systematic tasks. We have intro-
duced a new methodology to help develop Web applications rapidly and effectively
based on UML and XML technologies supporting data management task in small
and medium sized projects. We have added some remarks in the implementation
phase utilizing XML technologies to develop modular, scalable and expandable
Web based systems. Ongoing researches can go in several interesting research di-
rections in the design and development phase. We are going to study the additional
expandability of our UML based methodology.

References

[1] Ginegi, A., Murgesan S., The Essence of Web Engineering, in IEEE Multimedia,
Vol. 8 no. 3 (2003).

[2] Schwabe, D., A Conference Review System. 1st Workshop on Web-oriented Software
Technology, (2001).

[3] Holck, J., 4 Perspectives on Web Information Systems, in Proceedings of the 36th
Hawaii International Conference on system Sciences, IEEE, (2002).



172 A. Adamkó

[4] Gnaho, C., Web-based Information Systems Development – A User Centered Engi-
neering Approach, Lecture Notes in Computer Science, (2001).

[5] Bauer, C. et al., Matching Process Requirements with Information Technology to
Assess the Efficiency of Web Information Systems, Information Technology and Man-
agement 2, (2001).

[6] Hennicker, R., Koch, N., A UML-based Methodology for Hypermedia Design.,
UMLť2000, LNCS 1939, Springer Verlag, (2000), 410–424.

[7] W3C - World Wide Web Consortium, http://www.w3.org/

[8] Schattkowsky, T., Lohmann, M., Rapid development of modular dynamic web
sites using UML, In Proc. of 5th International Conference on UML 2002, Springer,
LNCS 2640, (Oct. 2002), 336–350.

Attila Adamkó
Department of Information Technology
University of Debrecen
H-4010, P.O. Box 12, Debrecen
Hungary


