
Proceedings of the 7 th International Conference on Applied Informatics
Eger, Hungary, January 28–31, 2007. Vol. 2. pp. 155–162.

Proving composed specifications of clean
programs in Sparkle-T∗

Máté Tejfel

Department of Programming Languages and Compilers, Eötvös Loránd University
e-mail: matej@inf.elte.hu

Abstract

An important class of software systems uses mobile components: compo-
nents that are downloaded through the network and integrated into a running
application. Clean Dynamics can be used for implementing mobile code in a
functional programming language. Our goal is to support the verification of
correctness of such applications. The correctness of these applications depend
on the properties of the mobile components. A technique called “composing
specifications” [1] is applicable in the above case. One can reason about the
correctness of a compound system with respect to the properties of some of
its components, even if these components themselves are unknown. We have
used Sparkle-T [13], an extended version of Sparkle [11], the dedicated theo-
rem prover of Clean [3] for dealing with composed specifications. In this paper
a case study is introduced. An invariant property of a compound program
is proven with the Sparkle-T system. The proof is based on the invariant
properties of its components.

Keywords: Clean, Sparkle, Verification, Composing Specifications

MSC: 68N18, 68N30, 68Q60

1. Introduction

Nowadays a huge amounts of software systems use mobile components. Compo-
nents that can be downloaded through the network and integrated into a running
application. Usually these components are created by a second party, therefore it
is extremely important to investigate the correctness of the components, the cor-
rectness of the whole running application and a safe manner of the transmission
between two remote applications. This safe transmission can be done, for example,
with the Certified Proved-Property-Carrying Code (CPPCC) architecture (see [4]).

∗Supported by GVOP-3.2.2.-2004-07-0005/3.0 ELTE IKKK and by the “Stiftung AÖU,
Wissenschafts- und Erziehungskooperation 66öu2 Programm-Verifikation mit Hilfe algebraischer
Methoden.”

155

156 M. Tejfel

With the use of such kind of architecture we can guarantee that the mobile com-
ponents satisfy some required properties. So one can reason about the correctness
of a compound system with respect to the properties of some of its components,
even if these components themselves are unknown. This technique is called “com-
posing specifications” [1]. It is well applicable in the case of temporal properties.
For example, those invariants which are preserved by all components of a program,
are also preserved by the compound program.

Temporal properties are very useful for proving the correctness of (sequential or
parallel) imperative programs. In the case of the correctness of functional programs,
the practicability of temporal operators is not so evident. In a pure functional
programming language a variable is a value and not an object that can change its
value in time, viz. during program execution.

In our opinion, however, in some cases it is natural to express our knowledge
about the computed values of the program in terms of temporal logical operators.
Moreover, in the case of parallel or distributed functional programs, and in the
case of reactive programs temporal properties are exactly as useful as they are in
the case of imperative programs. From this point of view, certain values computed
during the evaluation of a functional program can be regarded as successive values
of the same “abstract object”.

For our research Clean [3], a lazy, pure functional language was chosen. One
benefit of this choice is that a theorem prover, Sparkle [11] is already built into the
integrated development environment of Clean. Sparkle supports reasoning about
Clean programs almost directly. Other benefit is that we can apply the Dynamic
technique of Clean to compose the mobile component to the running application.

In order to formulate and prove temporal properties of a Clean program, the
“abstract objects” have to be determined, that is it has to be specified which func-
tional (mathematical) values correspond to different states of the same abstract
object. Therefore, Clean and correspondingly Sparkle have to be extended with
some new elements. The extended Sparkle system is called Sparkle-T [13], where
T stands for “temporal”. The formal description of how Sparkle-T handles object
abstraction and temporal logical properties was presented in [12].

This paper illustrates an extension of Sparkle-T which make it possible to de-
scribe composing specification within the theorem prover. The paper introduce a
case study which illustrate how can be applied the composing specification tech-
nique in the case of Clean programs.

The rest of the paper is structured as follows. First the object abstraction
method and the way to express temporal propositions in the Sparkle-T framework is
introduced through a simple example (Section 2). Next the technique of composing
specifications is illustrated (Section 3). Then a more complex example based on
the case study of [10] is presented (Section 4). This section explains how Sparkle-T
supports the description of composite specifications. Finally, the conclusion and
the discussion of related work is presented (Section 5).

Proving composed specifications of clean programs in Sparkle-T 157

2. Object abstraction

Consider the sort3 function below which is written in Clean. It takes three
integers and returns a tuple containing the same values in increasing order. The
definition of sort3 makes use of another function, sort2, which puts two integer
values in increasing order.

sort3 a1 b1 c1 sort2 x y
(a2, b2) = sort2 a1 b1 | x > y = (y,x)
(a3, c2) = sort2 a2 c1 | otherwise = (x,y)
(b3, c3) = sort2 b2 c2
= (a3, b3, c3)

Note that according to the scoping rules in Clean, this function definition is equiv-
alent to the one, where indexes is not used for a, b and c.

Here the values a1, a2 and a3 may be associated to the same abstract object,
e.g. a_obj. Similarly, the values bi and ci may be associated to b_obj and c_obj,
respectively. So the let-before expressions (denoted by #) will become the state
transitions (atomic actions) of this program.

For the demarcation of “abstract objects” Clean has to be extended with two
new language constructs. One of the constructs will be used to define which values
(functional variables) correspond to different states of the same abstract object.
The other construct will mark the state transitions of the program: in each state
transition, one or more objects may change their values. State transitions will be
regarded as atomic actions with respect to the temporal logical operators, and will
be referred to as “steps” in the following sections. The partial description of these
language constructs can be found in [12].

3. Composite specifications

Using Clean Dynamics it is possible to exchange a Clean expression between
different Clean applications. With this technique components which are created
by a second party can be integrate into a running application. For example in
the example of the previous section the sort2 function can be considered as
a mobile component which is taken from an other application. This applica-
tion can write it to a Clean Dynamic with the function writeDynamic "test"
(dynamic sort2) world. Hereafter this Dynamic can be used for example in the
following way.

sort3 :: Dynamic Int Int Int -> (Int,Int,Int)
sort3 (sort2::(Int Int ->(Int,Int))) a1 b1 c1

(a2, b2) = sort2 a1 b1
(a3, c2) = sort2 a2 c1
(b3, c3) = sort2 b2 c2
= (a3, b3, c3)

158 M. Tejfel

Start world
(ok,d,world) = readDynamic "test" world
| not ok = abort "Could not read"
| otherwise = (sort3 d 5 2 8, world)

The correctness of this kind of application largely depend on its components.
But usually the detailed code of the components is not known. However if a
safe transmission is applied, for example with the CPPCC architecture ([4]), some
properties of the components can be guaranteed. Using composite specification
some properties of the compound application can be proved based on the known
properties of its components.

Considering our simple example if there is guaranteed the mobile component
sorts two integer in increasing order, then the property sort3 sorts three integer
in increasing order can be proved. Namelly for any fun:

(∀v, w, p, q : fun v w = (p, q) → p 6 q)
|=
∀a, b, c, x, y, z : (sort3 fun a b c = (x, y, z)) → (x 6 y ∧ y 6 z)

4. Case study

The investigated method is much more interesting in the case the program has
more than one components and temporal properties of the compound program are
proved based on temporal properties of the components. In this section a case study
is introduced. An invariant property of a compound program is proved based on
the invariant properties of its components. The proof is created using the extended
Sparkle-T system.

The illustrated case study based on the simple example program introduced
in [10]. In this example a transaction is made up of two integer numbers; the first
one represents the date when the transaction occurred, and the other one stores
the amount of money transferred in the transaction. The database contains a list
of transactions and the overall sum of the amounts transferred in the transactions.

One can develop some basic operations for manipulating the database. A
new (empty) database can be created by invoking the function newDB. Functions
insertDB, removeFirst and sortDB can be regarded as state transition functions,
which describe how the state of a database will change. In the FP terminology,
these functions compute the “new value” of the database from the “old value”. Func-
tion insertDB creates a new database from the old one inserting a new transaction
to it, removeFirst creates a new database from the old one by removing the first
transaction, and sortDB computes the sorted version of the database. (In this
simple example program we might, but not obliged to, assume that the date is a
primary key.) The precise specification of the database and the definition of the
functions can be found in [10].

Proving composed specifications of clean programs in Sparkle-T 159

Now we can develop a simple “scenario” application, which is built upon the
basic operations. One can imagine that this scenario simulates an interactive ses-
sion between a database management application and an end-user. The input to
this scenario is a database and two transactions. First the transactions are inserted
into the database, then the resulting database is sorted, finally the first transaction
stored in the (sorted) database is removed.

scenario db1 t1 t2
db2 = insertDB t1 db1
db3 = insertDB t2 db2
db4 = sortDB db3
db5 = removeDB db4
= db5

Here we will introduce a single abstract object, a database, whose consecutive
states will be the different db values. The three functions insertDB, sortDB and
removeDB can be considered as mobile component created by a second party and
integrated into the scenario application in run-time. This can be made using Clean
Dynamic for example in the following way, where we have two application. The first
one creates a Dynamic from the three functions using the writeDynamic function.

module WriteDynamic
Start world =
writeDynamic "test" (dynamic (insertDB, sortDB, removeFirst)) world

While the other application use this Dynamic in the scenario.

module ReadDynamic
Start world
(ok,d,world) = readDynamic "test" world
| not ok = abort "could not read"
| otherwise = scenario newDB (1,5) (4,7) d

scenario :: !DB !(!Int,!Int) !(!Int,!Int) Dynamic -> DB
scenario db t1 t2 ((insert, sort, remove)

:: (!(!Int,!Int) !DB -> !DB,
!DB -> DB, !DB -> !DB))

db = insert t1 db
db = insert t2 db
db = sort db
db = remove db
= db

scenario _ _ _ _ = abort "Wrong type!"

Unfortunately the Sparkle system can not handle Clean Dynamic types exactly.
Therefore for the proof a simplified version of the above function is used, where
the three functions, insert, sort and remove are simple parameters.

160 M. Tejfel

In the case study the database is considered sound if the sum field of the
database contains the total sum of the transactions. For the definition of this
property two additional function will be used. The function querySum queries
the total sum of the transactions from the database. While the function calcSum
calculates the total sum of the transactions from the list part of the database.

Applying this functions the soundness of the database can be expressed as an
equality between the queried value and the calculated one and can be represented
in the following way.

soundDB:: !DB -> Bool
soundDB db = (calcSum db == querySum db)

We like to proof that the soundness of the database is an invariant in the com-
pound program supposing the components preserve it invariantly. This property
can be described more precisely in Sparkle-T in the following way.

(soundDB db_o)
INV(insert t db_o, sort db_o , remove db_o) (soundDB db_o)

|==
(soundDB db_o)

INV(scenario newDB t1 t2 (insert, sort, remove)) TRUE

Here the proposition p INV(f cxs) q means that proposition p holds invari-
antly during the evaluation of f cxs with respect to the precondition q.

For handling this kind of properties two new proof tactics was integrated into
Sparkle-T. One to unfold the complex invariant hypothesis to separate invariant
hypotheses refer to the different parameters. In the above case using this tactic
three new invariant hypotheses can be created refer to insert, sort and remove.

The other integrated tactic consider the parameter functions as atomic steps
and rewrite the above hypotheses into classical logical implications according to
the invariant definition based on the weakest precondition operator wp [5]. For
the application of this rewrite rule information is needed which part of the inputs
and outputs of the parameter functions are considered as object values. This
information has to be integrated also into the used Clean Dynamics. After the
application of the two new tactic the proof can be accomplished using the invariant
tactic introduced in [12] and the original tactics of Sparkle.

5. Conclusions

This paper introduced a method that allows the usage of the proof technique
“composing specification” in the case of programs written in an extended version
of the pure functional language Clean, which support the concept of object ab-
straction. This technique makes it possible to reason about the correctness of a
compound system with respect to the properties of some of its components, even

Proving composed specifications of clean programs in Sparkle-T 161

if these components themselves are unknown. Using Clean Dynamics it is possible
to implement applications uses mobile components. In the case of these programs
the illustrated technique is essential.

Proofs based on composite specifications are processed by a theorem prover
framework, Sparkle-T. This framework was obtained by enabling Sparkle, the the-
orem prover designed for Clean, to manage object abstraction, temporal proposi-
tions, and composed specifications. This paper focuses on composed specification,
and presents a case study illustrating the usage of this technique.

Considering related work, a framework for reasoning about file I/O in Clean
and Haskell programs is described in [6, 7]. The semantics of file operations is de-
fined in an explicit model of external world-state. Proofs are performed regarding
the observable effect of real-world functional I/O. The Sparkle proof-assistant was
used for machine-verify these proofs. Sparkle does not support Clean programs
with I/O, so the proofs are meta-proofs and the properties of the I/O operations
as state-transformers are not formulated in temporal logic. The state of the exter-
nal world, including the file system can be regarded as an abstract object [8], of
which temporal properties may be proved based on the lemmas about file-system
operations presented in [6, 7].

The initial results of our research on this topic were also related to functional
(Clean) programs using I/O [8]. Then temporal properties of mobile code were
addressed in [9]. In [10] the concept of object abstraction was introduced, and in-
variants of Clean programs were discussed. Then [12] provided the semantical basis
for Sparkle-T by extending Sparkle with a formal definition of invariants and unless
properties and the corresponding tactics. Furthermore, the first implementation
of the introduced concepts were described and used in some examples. The paper
[13] enhances Sparkle-T, the concept of theorems is generalized to allow (classical
logical) hypotheses. Hypotheses provide requirements addressing the parameters
of programs. Moreover, support for programs containing case-expressions, guards
and pattern matching was added to Sparkle-T.

The advantage of our method is that the constructed proof is represented in
a completely machine processable form. As a consequence, not only the program
but also its proved temporal properties and the proofs themselves can be stored,
transmitted or checked by a computer. This allows the transmission of the code
between two remote applications in a safe manner. This transmission can be done,
for example, with the Certified Proved-Property-Carrying Code architecture [4].

In the future the Sparkle-T framework will be made capable of handling addi-
tional temporal propositions, namely progress propositions (such as “ensures” and
“leads-to” [2]). The implementation of additional tactics for the handling of these
propositions is also planned.

References

[1] Abadi, M., Lamport, L., Composing specifications. ACM Trans. Program. Lang.
Syst. 15, 1 (Jan. 1993), 73–132.

162 M. Tejfel

[2] Chandy, K. M., Misra, J., Parallel Program Design: a Foundation, Addison-
Wesley, (1989).

[3] Clean homepage: http://www.cs.ru.nl/~clean/

[4] Daxkobler, K., Horváth, Z., Kozsik, T., A Prototype of CPPCC – Safe Func-
tional Mobile Code in Clean, Proceedings of Implementation of Functional Lan-
guages’02, Madrid, Spain, (Sept. 15–19, 2002), 301–310.

[5] Dijkstra, E. W., A Discipline of Programming. Prentice-Hall Inc., Englewood
Cliffs (N.Y.), (1976).

[6] Dowse, M., Butterfield, A., van Eekelen, M., de Mol, M., Plasmeijer,
R., Towards Machine-Verified Proofs for I/O, Proceedings of Implementation and
Application of Functional Languages, IFL’04, Lübeck, (September 8–10, 2004) 469–
480.

[7] Dowse, M., Butterfield, A., van Eekelen, M., Reasoning About Determinis-
tic Concurrent Functional I/O, Implementation and Application of Functional Lan-
guages: 16th International Workshop, IFL 2004, Lübeck, Germany, September 8-10,
2004 Revised Selected Papers Springer, LNCS, Volume 3474 (2005), 177–194.

[8] Horváth, Z., Achten, P., Kozsik, T., Plasmeijer, R., Proving the Temporal
Properties of the Unique World, Proceedings of the Sixth Symposium on Programming
Languages and Software Tools, Tallin, Estonia, (August 1999), 113–125.

[9] Horváth, Z., Achten, P., Kozsik, T., Plasmeijer, R., Verification of the
Temporal Properties of Dynamic Clean Processes, Proceedings of Implementation
of Functional Languages, IFL’99, Lochem, The Netherlands, (Sept. 7–10, 1999),
203–218.

[10] Horváth, Z., Kozsik, T., Tejfel, M., Verifying Invariants of Abstract Functional
Objects - a case study, 6th International Conference on Applied Informatics, Eger,
Hungary (January 27–31 2004).

[11] de Mol, M., van Eekelen, M., Plasmeijer, R., Theorem Proving for Functional
Programmers – SPARKLE: A Functional Theorem Prover, In: Arts, Th., Mohnen
M., eds.: Proceedings of the 13th International Workshop on the Implementation of
Functional Languages, IFL 2001, Selected Papers, Älvsjö, Sweden, Springer-Verlag,
LNCS 2312, (September 24–26, 2001), 55–71.

[12] Tejfel, M., Horváth, Z., Kozsik, T., Extending the Sparkle Core language
with object abstraction, CSCS 2004, The Fourth Conference of PhD Students in
Computer Science Szeged, Hungary, July 1–4, 2004. Acta Cybernetica, Vol. 17 (2005),
419–445.

[13] Tejfel, M., Horváth, Z., Kozsik, T., Temporal Properties of Clean Pro-
grams Proven in Sparkle-T, Proceedings of Central-European Functional Program-
ming School, CEFP 2005, Budapest, Hungary, July 4-16, 2005, Springer Verlag,
LNCS 4164 (2006), 168–190.

