
Proceedings of the 7 th International Conference on Applied Informatics
Eger, Hungary, January 28–31, 2007. Vol. 2. pp. 137–145.

Static rules of variable scoping in Erlang∗

László Lövei, Zoltán Horváth, Tamás Kozsik,
Roland Király, Róbert Kitlei

Department of Programming Languages and Compilers
Eötvös Loránd University, Budapest, Hungary

e-mail: {lovei,hz,kto,kiralyroland,kitlei}@inf.elte.hu

Abstract

Erlang/OTP is a functional programming environment designed for build-
ing concurrent and distributed fault-tolerant systems with soft real-time char-
acteristics. The dynamic nature of this environment, which partly comes
from concurrency and partly from dynamic language features, offers a great
challange for a refactoring tool. Refactoring is a programming technique for
improving the design of a program without changing its behaviour. Many
refactorings are concerned with variables in some way. This paper presents
variable scoping rules for Erlang that are more suitable for describing refactor-
ing conditions and transformations than those given in the Erlang reference
manual.

1. Introduction

The phrase “refactoring” stands for program transformations that preserve the
meaning of programs [5]. Such transformations are often applied in order to im-
prove the quality of program code: make it more readable, satisfy coding conven-
tions, prepare it for further development etc. Refactoring may precede a program
modification or extension, it may be used after finishing the work in order to bring
the program into a nicer shape, but it can be used for optimisation purposes as
well. Simple refactorings are used by developers almost every day; they rename
variables, introduce new arguments to functions, or create new functions from du-
plicated code.

In order to examine the feasibility of refactorings and to perform the trans-
formations on a program, it is essential to analyse the structure of functions and
expressions and the use of variables in that program. This paper proposes a way to
analyse variable bindings, and introduces rules for variable scoping and visibility.

∗Supported by GVOP-3.2.2-2004-07-0005/3.0 ELTE IKKK, Ericsson Hungary, ELTE CNL
and OMAA-ÖAU 66öu2.

137



138 L. Lövei, Z. Horváth, T. Kozsik, R. Király, R. Kitlei

The presented rules are more appropriate for implementing refactorings than those
given in the Erlang reference manual [3].

1.1. Erlang

Erlang/OTP is a functional programming environment developed by Ericsson.
It was designed for building concurrent and distributed fault-tolerant systems with
soft real-time characteristics (like telecommunication systems). The core Erlang
language consists of simple functional constructs extended with message passing to
handle concurrency. The language has a very strong dynamic nature that partly
comes from concurrency and partly from dynamic language features. Another char-
acteristics of the language that makes refactoring harder is that Erlang processes
cannot utilize shared memory, so message passing is used to exchange data between
processes.

OTP is a set of design principles and libraries that supports building fault-
tolerant systems [2]. It contains the gen-server, gen-fsm, gen-event, supervisor etc.
modules, which formalize a common pattern for client/server applications. These
modules (also called behaviours) are combined with callback modules – ones that
contain callback functions invoked from the behaviours. This complex structure of
modules hides many details of the inter-process communication, thus facilitating
the static analysis of Erlang/OTP applications.

1.2. Refactoring in Erlang

From the point of view of refactoring, the most important characteristic of a
programming language is the extent of semantical information available by static
analysis. Erlang is a functional programming language, which is an advantage for
refactoring. Side effects are restricted to message passing and built-in functions,1
and variables are assigned a value only once in their lifetime. In Erlang the code
is organised into modules with explicit interface definitions and static export and
import lists.

An unusual property for a functional language is that variables are not typed
statically: they can have a value of any data type. This and a few similar dynamic
features offer a real challenge to static analysis. As an example, consider the
matching of corresponding message send and receive instructions. A destination
of a message can be a process identifier or a registered name, which are bound
to function code at runtime. Data flow analysis might help in discovering these
relations, but it is a hard research topic in itself.

Another kind of problem is the possibility of running dynamically created code.
The most prominent example of this is the eval built-in function, which evaluates
a string – which is constructed at runtime – as Erlang code. This functionality
is clearly out of the scope of a static refactoring tool. However, there are similar
other constructs that are widely used and are possible to cover at least partially,

1Built-in functions, or BIFs, are functions that are implemented in the runtime system.



Static rules of variable scoping in Erlang 139

like the spawn function that starts the evaluation of a function in a new process
(and the function name and arguments might be constructed at runtime), or the
apply function that calls a function (with the same runtime-related problems). The
normal function call syntax has some runtime features too: variables are allowed
instead of static module or function names.

Due to the afore-mentioned difficulties, if a programmer wants to carry out
semantics preserving transformations, (s)he must be aware of the limitations of the
applied refactoring tool and those of the static analyses performed by the tool.

1.3. Variables in Erlang

Many refactorings are concerned with variables in some way. Expressions in
Erlang programs can use and define variables almost anywhere in the code. The
meaning of variables in an expression depends on its context. So the relation
between the variables and the context of the expression must be maintained during
a refactoring, otherwise the meaning of the modified program text would differ
from that of the original.

The relation of variables and expressions is defined in terms of visibility rules.
An expression can only use visible variables, and the visibility of variables begins
with their creation, often in an expression. Every refactoring that works with
variables or expressions must be able to determine the exact visibility region of
every variable.

The exact rules defining variable visibility are given in [3], using input and
output contexts for every language construct. These – operational semantics based
– rules are hard to follow and they are not really helpful in defining the conditions
of a refactoring. This paper proposes a more compact definition which is suitable
for static analyses and hence for verifying refactoring conditions.

In Erlang, variables have a name2 and a value bound to them (which never
changes during the lifetime of the variable). According to the rules presented in
this paper, the scope of a variable is a non-contiguous region of the program text
where a value is bound to the variable, and a variable is visible in a region where
its name can be used to refer to the variable.

2. Variable scoping and visibility

The scope of a variable is always limited to a function clause, a list comprehen-
sion or an element of a tuple or list. There are no global variables: every variable
is local to some scope delimiter, namely to a function clause (of either a declared
function or an explicit fun-expression), or to a list comprehension, or to an ele-
ment of a tuple or list. The outermost scope delimiters are the clauses of declared
functions: they are never nested in other scope delimiters, and every other scope
delimiter is nested (directly or indirectly) in a clause of a declared function.

2Variable names always begin with a capital letter or an underscore, the latter meaning an
ignored value.



140 L. Lövei, Z. Horváth, T. Kozsik, R. Király, R. Kitlei

sign_abs(X) ->
if

X > 0 -> Z = X, Y = 1;
X < 0 -> Z = -X, Y = -1;
X == 0 -> Z = 0, Y = 0

end,
{Y,Z}.

Figure 1: The definition of the sign_abs/1 function

A variable occurrence is direct in a scope delimiter, if it is an occurrence in
that scope delimiter, but not an occurrence in some enclosed scope delimiter. A
variable occurs directly in a scope delimiter, if it has at least one direct occurrence
in that scope delimiter.

The scope of a variable is a non-contiguous region of the outermost scope de-
limiter where the variable directly occurs. (There is exactly one such outermost
scope delimiter. Given a scope delimiter with no direct occurrences of a certain
variable name, but with two or more independent nested scope delimiters with
direct occurrences of that variable name, the variable name refers to two or more
independent variables.) The scope of a variable is given as a set of expressions.

Variables are created by the pattern matching mechanism. Pattern matching
is used in

• heads of function clauses (of declared functions or of fun-expressions),

• pattern match expressions,

• case, receive and try constructs and

• generators of list comprehension expressions.

The same variable might be defined by multiple pattern matching expressions;
for example, in different branches of a branching expression. Therefore the scope of
such a variable begins at multiple places of the program text: this is why the scope
is a non-contiguous region of the program text. Consider the function definition
in Figure 1. Its single clause is the outermost scope delimiter where variable Y
directly occurs. The expressions “Z = X”, “Z = -X” and “Z = 0” are not part of
the (non-contiguous) scope of Y.

Expression B is to the right of expression A in expression E if A and B are
directly in the same scope delimiter, and there exist expressions C, D1, D2, . . . ,
Dn such that A is a subexpression of C, and the expression “C,D1, D2, . . . , Dn, B”
is a subexpression of E. Note that “C,D1, D2, . . . , Dn, B” can be a sequence of
expressions (in a “block”), a sequence of “patterns” (in a composite pattern), a
sequence of “qualifiers” in a list comprehension or a sequence of “guards”.



Static rules of variable scoping in Erlang 141

If a variable occurs in a pattern matching, then the scope of this pattern match-
ing contains every expression to the right of the variable occurrence. Furthermore,
if the pattern matching is

• in the head of a function clause, then the guards and the body of the clause
is also part of the scope;

• in a list comprehension expression (the pattern of a generator), then the
qualifiers to the right of the generator and the body of the list comprehension
are also part of the scope;

• in a pattern match expression, then the right-hand side of that expression,
and all expressions to the right of the pattern match expression are also part
of the scope;

• in a branch of a “case”, “receive” or “try” expression, then that branch of
the expression and all the expressions to the right of the concerned (“case”,
“receive” or “try”) expression are also part of the scope.

The scope of a variable is defined in the following way. Take the (existent and
unique) outermost scope delimiter in which the variable directly occurs. The scope
of the variable is the union of the scopes of the pattern matching occurrences of
that variable that directly occur in that scope delimiter.

The rules describing the locality of variables are the following.

• Variable names occurring in the formal argument list of a function clause
denote variables local to that function clause. A variable name occurring
directly in a function clause but not occurring in the formal argument list of
the function clause denotes a variable local to that function clause if and only
if the function clause is not enclosed in the scope of a variable with that same
name. (Note that the function clause is enclosed in the scope of a variable if
and only if the function clause is a clause of an explicit fun-expression and
either (1) the variable is a local variable of the enclosing scope delimiter,
and the enclosed explicit fun-expression is within its–non-contiguous–scope,
or (2) the enclosing scope delimiter itself is also enclosed in the scope of the
variable.)

• Variable names occurring in the Pattern of a generator of a list comprehension
denote variables local to the list comprehension. A variable name occurring
directly in a list comprehension, but not in the Pattern of a generator of the
list comprehension denotes a variable local to the list comprehension if and
only if the list comprehension is not enclosed in the scope of a variable with
that name.

• A variable name directly occurring in an element of a tuple or list denotes a
variable local to that element of tuple or list if and only if that tuple or list
is not enclosed in the scope of a variable with that name.



142 L. Lövei, Z. Horváth, T. Kozsik, R. Király, R. Kitlei

These rules reveal that occurrences of variable names in formal argument lists
and patterns of generators of list comprehensions introduce variables that might
shadow variables of the enclosing scope delimiter.

A variable is visible within its scope where none of the following limitations
apply:

• A fun-expression creates a new scope for its parameters. When an existing
variable name is used in one of the formal arguments, it creates a new variable
that shadows the existing one (i.e. the outer variable is not visible inside the
function.)

• A nested scope delimiter may introduce a new variable with the same name.
The scope of such variables are excluded from the visibility region of the
concerned variable (shawoding).

• Variables created in a catch or try expression are unsafe to be used outside
that expression, so they are visible only inside the innermost enclosing catch
expression.

• Variables that are created inside a branch of a branching expression (those
are: if, case and receive), but are not bound a value in every branch, are
unsafe to be used outside that expression, so they are not visible outside the
expression.

• Variables created in the timeout expression of a receive construct’s after
branch, but are not bound in the body of that branch, are not considered to
be bound in that branch at all.3

3. Binding variables

The different occurrences of a variable are classified by [3] as “binding occur-
rences” and “non-binding occurrences”. The binding occurrences are those occur-
rences where the variable is bound to its (not unique, but final) value. Consider
again the sign_abs/1 function on Figure 1. The first three occurrences of Y are
binding occurrences, binding three different, but final values to variable Y. The last
occurrence is a non-binding one.

Note that the same syntactic form (pattern match) can refer to a binding or a
non-binding occurrence of a variable. In Figure 2, the second occurrence of X in
d/1 is clearly a non-binding occurrence.

It is not possible to decide which are the binding occurrences of a variable: this
depends on the specific Erlang implementation. In Figure 2, one of the occurrences
of Z in g/1 is a binding occurrence, and the other occurrence is a non-binding
one; but it is unspecified (left to the Erlang implementation) which is the binding
occurrence. To cover this strange situation, the concept of potentional binding

3Note that this behaviour does not comply with [3], and may be a compiler bug.



Static rules of variable scoping in Erlang 143

d(X) -> receive
{X,Y} -> Y;
_ -> 0

end.

g() -> (Z=1) + (Z=1).

Figure 2: Binding and non-binding occurrences of variables

occurrences can be introduced. If a variable occurs in a pattern matching, then
this occurrence is a potentional binding occurrence, if the scope of this occurrence is
not part of the scope of another pattern matching occurrence of the same variable.
In function g/1, both occurrences of Z are potentional binding occurrences.

A binding occurrence of a variable within a function clause is characterized as
a node in the abstract syntax tree where a value is bound to its identifier. These
locations are determined at runtime, and may depend on the execution control
flow. To cover all of the potentional binding occurrences, a set of AST nodes,
called binding occurrence candidates, is proposed. This set is determinable by
static analysis in the following way.

• Consider a variable occurring in the program. An identifier that matches
the name of this variable is a binding occurrence candidate, and we deem
the subtree that contains only the identifier closed. Any other leaves in the
syntax tree – identifiers with non-matching names or other kinds of nodes –
are not closed, and yield no candidates.

• We group nodes with subtrees into two categories. Let us call these conjunc-
tive and disjunctive, as is the connection between the closedness of the node
and its children.

– In the case of disjunctive nodes, of which the function body is a prime
example, we search until we find the first subtree that is closed. If we find
one, the parent node is closed, and the binding occurrence candidates
are those that we have found up to the closed subtree inclusively. Note
that the open subtrees before the closed subtree may contain candidates
as well.

– A conjunctive node (an if node, for example) is closed iff all of its
subtrees are closed. Such nodes yield all the bindings of their subtrees
whether closed or not.

– The case and try constructs form a special case. Their argument may
contain a match expression; in case it does, identifiers in the clauses
are certainly not to bind. Therefore these constructs are treated as a



144 L. Lövei, Z. Horváth, T. Kozsik, R. Király, R. Kitlei

conjunctive node with the argument as the first child and the clauses’
part as a second, disjunctive child.

Figure 3: Difference between a closed conjunctive and disjunctive case

4. Conclusions and related work

Refactoring was first recognised as a distinct programming technique of its own
in [5] which addressed a wide range of refactorings for object-oriented software,
providing examples in Java. Many tools are available that support various kinds of
renamings, extracting or inlining code, manipulating the class hierarchy etc. There
is a good summary of the available tools and a catalog of well-known refactorings
at [6]. Refactoring in functional languages has received much less attention. Haskell
was the first functional language to gain tool support for refactoring [7]. Refactoring
functional programs using database representation first appeared in [4] for the
Clean language – a prototype is available from this research [9].

Refactoring Erlang programs is a joint research with the University of Kent [8],
building on experiences with Haskell and Clean. The workgroup at Eötvös Loránd
University is developping a refactoring tool that is based on a graph representation
of Erlang programs and is mapped onto a database. This paper describes rules
which are useful for the static analysis of variable occurrences: scoping, visibility
and potential binding occurrences. These rules provide a better basis for verifying
the conditions of, and performing, those refactoring transformations that are re-
lated to variables than the rules given in the Erlang reference manual [3]. Based on
the rules presented here, a number of refactorings have already been implemented,
such as Merge Subexpression Duplicates, Eliminate Variable and Extract Function.

References

[1] Armstrong, J., Virding, R., Williams, M., Wikstrom, C., Concurrent Pro-
gramming in Erlang, Prentice Hall, (1996).



Static rules of variable scoping in Erlang 145

[2] Armstrong, J., Making reliable distributed systems in the presence of software
errors, PhD thesis, The Royal Institute of Technology, Stockholm, Sweden, (December
2003).

[3] Barklund, J., Virding, R., Erlang Reference Manual, (1999), http://www.erlang.
org/download/erl_spec47.ps.gz.

[4] Diviánszky, P., Szabó-Nacsa, R., Horváth, Z., Refactoring via database repre-
sentation, The Sixth International Conference on Applied Informatics (ICAI 2004),
Eger, Hungary, vol. 1, 129–136.

[5] Fowler, M., Beck, K., Brant, J., Opdyke, W., Roberts, D., Refactoring:
Improving the Design of Existing Code, Addison-Wesley, (1999).

[6] Martin Fowler’s refactoring site, http://www.refactoring.com/

[7] Li, H., Reinke, C., Thompson, S., Tool support for refactoring functional pro-
grams, Haskell Workshop: Proceedings of the ACM SIGPLAN workshop on Haskell,
Uppsala, Sweden, (2003), 27–38.

[8] Li, H., Thompson, S., Lövei, L., Horváth, Z., Kozsik, T., Víg, A., Nagy,
T., Refactoring Erlang Programs, Proceedings of the 12th International Erlang/OTP
User Conference, (November 2006).

[9] Szabó-Nacsa, R., Diviánszky, P., Horváth, Z., Prototype environment for refac-
toring Clean programs, The Fourth Conference of PhD Students in Computer Science
(CSCS 2004), Szeged, Hungary, July 1–4.


