
Proceedings of the 7 th International Conference on Applied Informatics
Eger, Hungary, January 28–31, 2007. Vol. 2. pp. 117–125.

Separation logic style reasoning in a
refinement based language∗

Gergely Dévai, Zoltán Csörnyei

Eötvös Loránd University, Department of Programming Languages and Compilers
e-mail: deva@elte.hu, csz@inf.elte.hu

Abstract

Separation logic is an extension of classical logic to reason about pro-
grams that use pointers and dynamic memory management. It is known that
separation logic can be expressed in classical logic, so its power lies in its
reasoning style.

Refinement based programming starts with the formal description of the
requirements concerning the program. This specification is then refined in
several steps towards an implementation, which is correct by construction.

In this paper we show how to build proofs in a refinement based language
using the style of separation logic. We transform special elements of separa-
tion logic back into classical logic in order to be able to handle them in the
selected system. We also discuss our implementation of a well-known proof
of separation logic.

1. Motivation

Formal methods in software development become more and more important,
because the hidden errors in programs costs a lot: testing and bugfixing is a signif-
icant part of software projects’ life cycle. It is quite promising that by developping
verified programs most of these programming errors can be eliminated, but systems
implementing formal methods are to be improved a lot to become widely used in
industrial software development.

Both separation logic [14] and refinement based software development [12, 11]
are techniques that can help. Separation logic is an elegant approach to reason
about data structures dynamically created and modified. It is enough to consider
the most popular object oriented languages that use objects created in run time, to
understand the relevancy of this research area. Refinement based software devel-
opment has certain advantages among formal methods: it can be highly integrated

∗This work is supported by “Stiftung AKTION Österreich-Ungarn” (OMAA-ÖAU 66öu2) and
“ELTE IKKK” (GVOP-3.2.2-2004-07-0005/3.0).

117

118 G. Dévai, Z. Csörnyei

into the development process and it helps to detect (and prevent) design errors in
an early stage of the development process [10].

In this paper we inspect how to use a refinement based language to implement
proofs in the style of separation logic. In Section 2 we give a short presentation
of separation logic from our point of view. Section 3 presents the selected proof
language and system, while in Section 4 we integrate separation logic into this
system. Some conclusions of a realistic example is presented in Section 5.

2. Separation logic

In classical weakest precondition calculus and Hoare logic [8] we exploit the hid-
den property of the underlying models that there is a one-to-one mapping between
variable names and memory locations where the values are stored. For example
to prove that from the precondition y = z the instruction x := 0 results in the
postcondition x = 0 ∧ y = z, we can compute the weakest precondition

wp(x := 0, x = 0 ∧ y = z) = (x = 0 ∧ y = z)[x/0] = (0 = 0 ∧ y = z) = (y = z),

or, if we want to use forward reasoning, we can use the axiom

{True}x := 0{x = 0}

and the frame axiom

{Q}x := 0{R}
{P ∧Q}x := 0{P ∧R} , if P does not contain x.

Each of these methods relies on the fact that the variable x can be syntactically
distinguished from other variables, like y and z. Unfortunately these approaches
fail if we use pointers in the program. Although the axiom

{p points to a valid location}[p] := 0{[p] = 0}

remains true (if we can express somehow what a valid location is), both

{Q}[p] := 0{R}
{P ∧Q}[p] := 0{P ∧R} , if P does not contain [p]

and
wp([p] := 0, [p] = 0 ∧ [q] = z) = ([q] = z)

fail, because it is possible that the pointers p and q are pointing to the same
location. Somehow we have to express that the pointers are referencing different
parts of the heap memory, and separation logic shows an elegant way to do that.

Separation logic introduces the following predicates and connectives to describe
the current state of the heap:

• emp means that the heap is empty,

Separation logic style reasoning in a refinement based language 119

• p 7→ v means that the heap contains the only value v pointed by the pointer
p,

• P ∗ Q (separating conjunction) means that the heap can be split into two
disjoint sub-heaps h1 and h2 such that P describes h1 and Q describes h2,

• P − ∗Q (separating implication) means that if we extend the current heap
with a disjoint part which satisfies P , then the extended heap satisfies Q.

Using these extensions of logic we can state that

{∃v.p 7→ v}[p] := 0{p 7→ 0},

and, for example, by (∃v.p 7→ v)∗ (q 7→ z) we can express that p and q are pointing
to different locations.

The frame rule of separation logic is the following:

{Q}s{R}
{P ∗Q}s{P ∗R}

It expresses that if a program operates in a part of the heap, it preserves the state
of other heap parts. Using these rules, we can solve our previous problem and
prove the following:

{(∃v.p 7→ v) ∗ q 7→ z}[p] := 0{p 7→ 0 ∗ q 7→ z}.

3. The refinement based language LaCert

In this paper we mention only the language features required to understand
Section 4, which explaines the enbedding of separation logic into LaCert. For more
details the reader is referred to [6] and [1].

With LaCert one can produce verified program code. Unlike testing or ex-
tended static checking [5] a program accepted by LaCert ’s compiler satisfies all the
requirements of its specification. (Of course, just like in case of all other formal
methods, the axioms describing mathematical functions and the temporal axioms
of the target language instructions must be sound.)

LaCert aims to help in the development of imperative programs. Although func-
tional programming is a promissing field for formal methods, there are specifically
imperative problems (like I/O management) that require special reasoning tech-
niques [9]. The popularity of imperative languages is another argument for this
design decision.

Unlike verification systems, where one writes program code first and then uses
authomatic tools or a semi-authomatic theorem proover [3, 13, 15] to prove (or
disprove) certain properties of the code, in LaCert one starts the development by
the specification and reaches the implementation via its refinemets. This strategie
has advantages, like correctness by construction and early recovery of errors. It is

120 G. Dévai, Z. Csörnyei

also used for example in the B-method [2], which is one of the few formal methods
also applied in industry.

While in most refinement based systems one writes program code in the final
refinement steps, in LaCert this is done automatically by a separate code generator
module. Another point is the advanced metaprogramming features of this language.
Often used proof parts can be parameterised and encapsulated in templates. These
templates can later be called to use the proof fragment inside. Different kinds of
templates exist to express axioms, temporal axioms, tactics and to help induction.

Specifications and their refinements consist of temporal properties, namely
progress- and safety properties. These are built up by first order predicate logic
formulas, whose variables are program variables and parameters. Safety properties
are enclosed in [and] brackets, while the pre- and postconditions of a progress
property is connected by the ≫ operator.

[y = z];
ip = K > > ip = L & x = 0;

These properties state that whenever the program execution reaches the label K,
it has to reach L and then the variable x must be zero. The safety property ensures
that during this progress the validity of y = z is preserved.

Note the explicit usage of the ip (instruction pointer) variable and labels in the
specification languge. This makes our progress properties more expressive com-
pared to classical Hoare logic. (It is possible for example to specify non-terminating
programs in this way.)

A progress property can be refined by two basic constructs: sequence and case
distinction. The first one introduces intermediate steps, while the second one breaks
a disjunction in the precondition into cases. The refining statements are to be re-
fined further unless they are temporal axioms of instructions of the target language.

These axioms are defined in special templates. The calls of these templates
(and the arguments of the calls) are collected by the compiler. The code generator
(which is apart from the compiler) transformes these calls into the syntax of the
target programming language. For example, in case of C++ as the target language,
the above specification would result in the following code fragment.

K: x = 0;
L:

4. Integration of separation logic into LaCert

In this section we present how to write specifications and proofs in the style of
separation logic. As a result we can specify and implement verified programs that
involve dynamic memory management.

As we wanted to integrate separation logic without modifying the compiler, we
had to transform its extensions to the logic supported by LaCert.

Separation logic style reasoning in a refinement based language 121

4.1. Back to classical logic
The problem of representing separation logic in classical logic is a field currently

under research. Approaches like [4] represent restricted versions of separation logic
with the goal of obtaining formulas that can be managed efficiently by well-known
automatic reasoning methods of classical logic. Our goal is different: we need easily
readable and compact representation some features of separation logic. As we want
to construct forward reasoning style proofs, we drop separating implication (which
is mainly used to express the weakest precondition of memory allocation). As a
second restriction, we will not merge the special connectives with classical logic
ones. That is, we deal with formulas built of emp, 7→ and ∗ only. We will refer to
these restricted formulas as conjunctive heap formulas.

In order to represent these formulas, we use the semantics of separation logic
[16]: we let the heap appearing in the specification explicitly as a variable. To
define the type Heap and to declare the variable, we write the following in the
syntax of LaCert :

type(Heap);
variable(heap, Heap);

We implement the empty heap as a function without arguments returning a heap:

function(”empty”, Heap);

The singleton heap consisting of a value of type #T and pointed by a pointer is
represented by the at : Pointer ×#T → Heap function. In the following generic
declaration #T is a type parameter.

function(”at”, Heap, Pointer, #T);

The key is the representation of the separating conjunction. Its semantics is usually
given using a binary operator that combins two heaps and which is defined only if
the combined heaps are disjoint. We overload the + operator of LaCert with the
following declaration:

function(”+”, Heap, Heap, Heap);

Using the following representation we map each conjunctive heap formula to a
LaCert expression of type Heap:

Rep(emp) = empty()
Rep(p 7→ v) = at(p, v)
Rep(P ∗Q) = Rep(P) +Rep(Q)

Using this representation, the LaCert fomula modelling the conjunctive heap
formula P is

heap = Rep(P).

For example, the formula (∃v.p 7→ v)∗(q 7→ z) from section 2 is transformed first to
∃v.((p 7→ v) ∗ (q 7→ z)) using a rule of separation logic and then written in LaCert
as follows:

122 G. Dévai, Z. Csörnyei

exists(Integer @v, heap = at(p,@v) + at(q,z))

4.2. Specification of instructions related to the heap

Using the techniques presented in the previous sections we can give the specifi-
cations of the instructions related to the heap. Instructions are needed to allocate
memory, to set and to get the value of a variable on the heap, and to dispose the
variable.

Each instruction specification consists of a safety property and a progress prop-
erty both of wich are enclosed in a template. To save space, we will not present
the entire templates, nor the safety properties. These can be found in the technical
report [7].

4.2.1. Allocation

Allocation of a new variable on the heap extends the current heap with a disjoint
part, and the address of the newly allocated value is stored in a pointer. The
parameters of the template containing the specification of this instruction are the
following: #hV al is an expression describing the old value of the heap, #p is
the pointer, #before and #after are the labels of this and the next instruction
respectively. The progress property of this instruction:

ip = #before & heap = #hVal
> > ip = #after
& exists(Integer @v, heap = at(#p,@v) + #hVal);

The progress property states that whenever the execution of the program is at the
label of the instruction (#before) and the heap has the value #hV al, the program
steps to the following label (#after) and the heap is extended by a disjoint part
consisting of some value (@v) and pointed by pointer #p.

This instruction modifies only the instruction pointer (ip), the pointer that we
assign the new address to (#p), and the heap. Any expression independent of these
variables is a safety property of the instruction.

4.2.2. Writing the value of a variable on the heap

Modifying the value of a variable pointed by a pointer also modifies the heap,
but the pointer remains unchanged. The progress property of this instruction can
be written as follows.

ip = #before
& exists(Integer @v, heap = at(#p,@v) + #hVal)
> > ip = #after & heap = at(#p,#val) + #hVal;

The structure of the property is similar to the one’s explained in the previous
section, so instead of going into the details, let us compare it to the similar axiom

Separation logic style reasoning in a refinement based language 123

of separation logic:
{∃v.(p 7→ v)}[p] := val{p 7→ val}

This axiom is just the so called footprint of the instruction, i.e. it only involves the
relevant part of the heap. If our heap is larger, we have to use the frame rule of
separation logic that we mentioned in Section 2. This frame rule appears explicitly
in the LaCert specification: the unmodified part of the heap is denoted by the
#hV al template parameter.

4.2.3. Reading the value of a variable on the heap

Among our four instructions discussed here, this is the only one which does
not modify the heap. That is why it does not appear in the postcondition. The
compiler can use the safety property axiom to infer that an assertion describing
the state of the heap is preserved by this instruction.

ip = #before & heap = at(p,#val) + #hVal
> > ip = #after & #var = #val;

4.2.4. Disposing a variable on the heap

Deallocation is the inverse instruction of allocation and this fact is well reflected
by the specification: pre- and postconditions are swapped. There is one notable
difference: deallocation does not affect the value of the pointer.

ip = #before
& exists(Integer @v, heap = at(p,@v) + #hVal)
> > ip = #after & heap = #hVal;

5. Listreversal example

In-place reversal of a linked list is a classical example of separation logic. At
first, we have to express that a pointer points to the beginning of a linked list. In the
separation logic solution this is expressed using an inductively defined predicate in
terms of the special predicates and connectives. In the spirit of the representation
described in Section 4.1, we use the following heap-valued function instead.

list(p, s)

This describes a heap-part containing a linked list with the sequence s and pointed
by the pointer p. Using this function and the reverse function defined on sequences,
the specification of the listreversal is the following:

ip = ListRevStart & heap = list(p, s)
> > ip = ListRevStop & heap = list(q, reverse(s))

124 G. Dévai, Z. Csörnyei

The current version of the refinements are rather long due to the currently limited
reasoning capabilities of LaCert. The resulting C++ program consists of 10 in-
structions, while the depth of the proof tree of the refinements in LaCert is 5 and
it involves 74 basic proof steps. Most of these steps are quite simple, therefore we
expect that after further development of the system this number will decrease to
16–20, which is more acceptable.

6. Summary

In this paper we pointed out that the reasoning style of separation logic can also
be used in systems based on classical logic. For this embedding, we have chosen a
refinement based system because it helps also during the development process not
only in posterior error-recovery.

We transformed the needed extensions of separation logic back to classical logic
based on its semantics. The progress properties of the basic heap management
instructions were presented. It was also observed that the so-called frame rule of
separation logic is implicitly present in these progress properties.

As the result of this work it is now possible to specify and implement verified
programs that use dynamic memory management. Investigating a not completely
trivial example we concluded that the automatic reasoning capabilities of the sys-
tem are to be developed further to be able to decrease the size of the user-written
proof.

References

[1] Home of LaCert http://deva.web.elte.hu/LaCert

[2] Abrial, J.-R., The B-book: assigning programs to meanings, Cambridge
University Press, New York, NY, USA, (1996).

[3] Bertot, Y., Castéran, P., Interactive Theorem Proving and Program De-
velopment. Coq’Art: The Calculus of Inductive Constructions, Texts in The-
oretical Computer Science, Springer Verlag, (2004).

[4] Calcagno, C., Gardner, P., Hague, M., From separation logic to first-
order logic, In FOSSACS, (2005).

[5] Cok, D. R., Kiniry, J. R., ESC/Java2: Uniting ESC/Java and JML, In
Construction and Analysis of Safe, Secure, and Interoperable Smart Devices,
Springer, vol. 3362 (2005), 108–128.

[6] Dévai, G., Programming language elements for correctness proofs, Acta Cy-
bernetica (accepted for publication), (2007).

[7] Dévai, G., Specification of heap related instructions in LaCert, Technical
report, (2007).

Separation logic style reasoning in a refinement based language 125

[8] Hoare, C. A. R., An axiomatic basis for computer programming, Commun.
ACM, 12(10) (1969), 576–580.

[9] Horváth, Z., Kozsik, T., Tejfel, M., Extending the Sparkle core language
with object abstraction, Acta Cybernetica, 17 (2005), 419–445.

[10] McDonald, J., Anton, J., Specware - producing software correct by con-
struction, (2001).

[11] Morgan, C., Programming from specifications, Prentice Hall International
(UK) Ltd., second edition, (1994).

[12] Morris, J. M., A theoretical basis for stepwise refinement and the program-
ming calculus, Sci. Comput. Program., 9(3) (1987), 287–306.

[13] Nipkow, T., Paulson, L. C., Wenzel, M., Isabelle/HOL – A Proof Assis-
tant for Higher-Order Logic, volume 2283 of LNCS, Springer-Verlag, (2002).

[14] O’Hearn, P., Reynolds, J., Yang, H., Local reasoning about programs
that alter data structures, Lecture Notes in Computer Science, 2142, (2001).

[15] Pásztor Varga, K., Várterész, M., Usability of some theorem proving
systems, PU.M.A., 15(2-3) (2004), 273–284.

[16] Yang, H., O’Hearn, P., A semantic basis for local reasoning, In Foundations
of Software Science and Computation Structure, (2002), 402–416.

