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Abstract
In the present work a numerical method is developed for the approxima-

tion of the J ∈ (0,∞) interval in Ricceri’s theorem, to obtain the solution of
elliptic type partial differential equations by using energy functionals. The
critical surfaces are also approximated.
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1. Introduction

Let us consider the following partial differential equation with a boundary con-
dition:

(Pλ)

{
−△u = λf (u) , x ∈ Ω
u|∂Ω = 0

where Ω ⊂ Rn is a compact set.
The problem (Pλ) is a simplified form of certain stationary waves in the non-

linear Schrödinger equation, where the potential energy is zero, and the nonlinear
term f is a perturbation, which satisfies the conditions in Ricceri theorem (Theo-
rem 1.1). Under these conditions (Pλ) is a resonant problem.

We assign an energy functional Eλ : H1
0 (Ω) → R to this problem defined on

Sobolev space H1
0 (Ω) given by:

Eλ (u) =
1

2
‖u‖2H1

0
− λ

∫

Ω

F (u (x)) dx

where
F (s) =

∫ s

0

f (x) dx.
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We know that Eλ is a continuous derivable and the critical points of Eλ are the
weak solutions of the problem (Pλ).

The numerical calculation of the critical points is based on special case of the
Ricceri’s theorem [1]:

Theorem 1.1. Let Ω ⊆ Rn be an open bounded set, with smooth boundary, and
f : R→ R a continuous function with supx∈R

∫ x

0 f (t) dt > 0. Assume that there a,
q, s, γ, with q < n+2

n−2 (if n > 2), s < 2 and γ > 2, such that

|f (x)| 6 a (1 + |x|q) ∀x ∈ R,∫ x

0

f (t) dt 6 a (1 + |x|s) ∀x ∈ R

and

lim sup
x→0

∫ x

0
f (t) dt

|x|γ < +∞.

Then there exists an open interval J ⊆ [0,+∞[ such that for each λ ∈ J the problem
(Pλ) has at least three distinct weak solutions in H1

0 (Ω).

In the present work a numerical method is developed for the determination of
the J ⊂ (0,∞) interval for concrete problems.

2. The numerical method

The basic idea is: We approximate the directional derivate of Eλ for certain u
elements (smooth surfaces) in du direction:

dEλ

du
(u) = lim

t→0

Eλ (u+ tdu)− Eλ (u)

t
.

The critical points are the solutions of the equation:

dEλ

du
(u) = 0.

The solutions of the equation can be approximated with the solutions of the fol-
lowing equation by taking small values for t 6= 0

Eλ (u+ tdu)− Eλ (u) = 0, ∀du.

If we consider a u surface (smooth) in H1
0 (Ω), then by resolving the previous

equation, we obtain

λ =
1

2

‖u+ tdu‖2 − ‖u‖2∫
Ω

[F (u (x) + tdu (x))− F (u (x))] dx
. (2.1)
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By using formula (2.1), we calculate the value of λ where u could be a critical
surface for Eλ. We proceed from a little modified surface u0.

We consider a compact set Ω in R2, and a sublinear function f = f (u).
The algorithm of determination of λ:

Step 1. We take a grid with step h on Ω. We consider the values of the surfaces
in the intersections: u (xi, yj) = ui,j

Step 2. We approximate u with cubic spline surfaces where (xi, yj , ui,j) are the
control points.

Step 3. We approximate (∇u)i,j in the interior of Ω by using the following for-
mulas of approximations at second degree

(
∂u

∂x

)

i,j

≈ ui+1,j − ui−1,j

2h
,

(
∂u

∂y

)

i,j

≈ ui,j+1 − ui,j−1

2h
,

and at the margin by using
(
∂u

∂x

)

i,j

≈ ui±1,j ∓ ui,j
±h ,

(
∂u

∂y

)

i,j

≈ ui,j±1 ∓ ui,j
±h .

Step 4. We count out the integrates by using the trapezoid rule.

‖u‖2H1
0
=

∫

Ω

|∇u|2 dx, and
∫

Ω

F (u (x)) dx.

Step 5. Let u := u+ t · du.

Step 6. We apply steps 3 and 4 for a new value at u.

Step 7. We calculate the value of λ with formula (2.1).

Figure 1: Graph of λ for 3× 3 grid
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3. Results

By using the Matlab program, we studied the variations of λ for the f (u) =
arctan2 (u) sublinear function, where Ω is a square.

Figure 2: Graph of λ for 4× 4 grid

We take a 3 × 3 grid in Ω. The nodes of the grid are the control points of the
surface. If we change the value of u2,2, the control point in the middle of the grid,
between 0 and 4, and the values of the other control points remain the same, we
obtain Figure 1.

The Ox axis indicates the height of the altering control point, and the Oy axis
gives the λ values. The graph shows that on which λ value the framed surface is
the critical surface of the energy functional, for a given height of the control point.

Figure 3: Graph of λ for 5× 5 grid
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The surface given by Figure 1 presents the surface when the graph has local
minimum

If we consider four control points in the interior of Ω (4×4 grid), where three is
fixed and the value of the forth point varies, then we obtain Figure 2. The surface
beside the graph is the surface where the graph has inflection point.

If we consider nine control points in the interior of Ω (5 × 5 grid), where the
value in one of the extreme control points varies, and the values of the remaining
eight control points are fixed, then we obtain Figures 3. The surfaces under the
graph represent the surfaces where the graph of Figure 3 has local maximum and
local minimum, respectively.

If we consider again nine control points in the interior of Ω (5×5 grid), where we
vary the height of the control point in the middle of the grid, we obtain Figures 4.
The surfaces under the graphs represent the surfaces where the graphs of Figure 3
have vertical asymptote, local maximum and local minimum, respectively.

Figure 4: Graph of λ for 5× 5 grid

We have to examine the correctness of our method, because approximation er-
rors could intervene. That is by taking lower steps in the derivation and integration
formulas we have to obtain better approximation results. Therefore we obtain a
converging array of curves for different kinds of resolution, that is every time we
divide the resolution in two equal parts (see Figure 5).
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Figure 5: Convergence

Table 1 shows the distance between two consequent graphs for given resolutions
and height of control points. Accordingly, it is suggested to take small resolution
where the little change of the control point height induces big changes of the λ
value.

0.25 0.5 0.75
0.05-0.025 63.31 15.33 6.06

0.025-0.0125 33.51 7.92 3.12
0.0125-0.00625 17.23 4.03 1.58

0.00625-0.003125 8.73 2.03 0.8
0.003125-0.0015625 4.39 1.02 0.4

0.0015625-0.00078125 2.21 0.51 0.2

Table 1: Converging distances

4. Conclusions

We can approximate the J ⊂ (0,∞) interval in the Ricceri’s theorem with the
presented method. We can approximate the interval of λ with 0 and 27000 by
examine the obtained figures. So the case is worth dealing with is when we take
values between 0 and 27000 for λ.

Also we can determine the values in the control points for which we can find
critical surfaces of Eλ for a given λ. If, for example, we choose the value of λ
equal to 5000 we obtain seven surfaces which could be critical values of the energy
functional Eλ (see Figure 6). The altering control points height are written under
the figures.
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Figure 6: The possible critical surfaces for λ = 5000
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